Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Series

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 128

Full-Text Articles in Mechanical Engineering

Amplitude And Wavelength Scaling Of Sinusoidal Roughness Effects In Turbulent Channel Flow At Fixed ReΤ, Sparsh Ganju, Sean C. C. Bailey, Christoph Brehm Feb 2022

Amplitude And Wavelength Scaling Of Sinusoidal Roughness Effects In Turbulent Channel Flow At Fixed ReΤ, Sparsh Ganju, Sean C. C. Bailey, Christoph Brehm

Mechanical Engineering Faculty Publications

Direct numerical simulations are performed for incompressible, turbulent channel flow over a smooth wall and different sinusoidal wall roughness configurations at a constant Reτ = 720. Sinusoidal walls are used to study the effects of well-defined geometric features of roughness-amplitude, a, and wavelength, λ, on the flow. The flow in the near-wall region is strongly influenced by both a and λ. Establishing appropriate scaling laws will aid in understanding the effects of roughness and identifying the relevant physical mechanisms. Using inner variables and the roughness function to scale the flow quantities provides support for Townsend’s hypothesis, …


Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu Feb 2022

Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu

Mechanical Engineering Faculty Publications

Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error-prone. We present a new computational platform, to compute wall stresses in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and VLBM, (3) an en-route …


A Novel Approach For Real-Time Quality Monitoring In Machining Of Aerospace Alloy Through Acoustic Emission Signal Transformation For Dnn, David Adeniji, Kyle Oligee, Julius Schoop Jan 2022

A Novel Approach For Real-Time Quality Monitoring In Machining Of Aerospace Alloy Through Acoustic Emission Signal Transformation For Dnn, David Adeniji, Kyle Oligee, Julius Schoop

Mechanical Engineering Faculty Publications

Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl components, making the workpiece surface’s quality from finish machining a critical component to product quality and performance. To address this issue and enable more widespread use of γ-TiAl, this research aims to develop a …


A Novel Approach For Real-Time Quality Monitoring In Machining Of Aerospace Alloy Through Acoustic Emission Signal Transformation For Dnn, David Adeniji, Kyle Oligee, Julius Schoop Jan 2022

A Novel Approach For Real-Time Quality Monitoring In Machining Of Aerospace Alloy Through Acoustic Emission Signal Transformation For Dnn, David Adeniji, Kyle Oligee, Julius Schoop

Mechanical Engineering Faculty Publications

Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800◦C. However, low damage tolerance, i.e., brittle material behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl components, making the workpiece surface’s quality from finish machining a critical component to product quality and performance. To address this issue and enable more widespread use of γ-TiAl, this research aims to develop a real-time …


Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk Jan 2022

Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk

Mechanical Engineering Graduate Research

The estimation of PV production has been widely investigated previously, where many empirical models have been proposed to account for wind and soiling effects for specific locations. However, the performance of these models varies among the investigated sites. Hence, it is vital to assess and evaluate the performance of these models and benchmark them against the common PV estimation model that accounts only for the ambient temperature. Therefore, this study aims to evaluate the accuracy and performance of four empirical wind models considering the soiling effect, and compare them to the standard model for a 103 MW PV plant in …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro Oct 2021

Fischer–Tropsch Synthesis: Effect Of The Promoter’S Ionic Charge And Valence Level Energy On Activity, Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Muthu Kumaran Gnanamani, Michela Martinelli, Gabriel F. Upton, Gary Jacobs, Mauro C. Ribeiro

Center for Applied Energy Research Faculty and Staff Publications

In this contribution, we examine the effect of the promoter´s ionic charge and valence orbital energy on the catalytic activity of Fe-based catalysts, based on in situ synchrotron X-ray powder diffraction (SXRPD), temperature-programmed-based techniques (TPR, TPD, CO-TP carburization), and Fischer–Tropsch synthesis catalytic testing studies. We compared the promoting effects of K (a known promoter for longer-chained products) with Ba, which has a similar ionic radius but has double the ionic charge. Despite being partially “buried” in a crystalline BaCO3 phase, the carburization of the Ba-promoted catalyst was more effective than that of K; this was primarily due to its …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Free Vibration Analysis Of Rotating Beams Based On The Modified Couple Stress Theory And Coupled Displacement Field, Alireza Babaei, Masoud Arabghahestani Apr 2021

Free Vibration Analysis Of Rotating Beams Based On The Modified Couple Stress Theory And Coupled Displacement Field, Alireza Babaei, Masoud Arabghahestani

Mechanical Engineering Graduate Research

In this paper, transverse vibration analysis of rotating micro-beam is investigated based on the modified couple stress theory. The simply-supported micro-beam is modeled utilizing Euler-Bernoulli and Timoshenko beam theories. The system is rotating around a fixed axis perpendicular to the axial direction of the beam. For the first time, displacement filed is introduced as a coupled field to the translational field. In other words, the mentioned rotational displacement field is expressed as a proportional function of translational displacement field using first (axial), second (lateral), and third (angular or rotational) velocity factors. Utilizing Hamilton’s approach as a variational method, dynamic-vibration equations …


A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed Apr 2021

A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed

Mechanical Engineering Graduate Research

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable …


In-Situ Calibrated Modeling Of Residual Stresses Induced In Machining Under Various Cooling And Lubricating Environments, Julius M. Schoop Mar 2021

In-Situ Calibrated Modeling Of Residual Stresses Induced In Machining Under Various Cooling And Lubricating Environments, Julius M. Schoop

Mechanical Engineering Faculty Publications

Although many functional characteristics, such as fatigue life and damage resistance depend on residual stresses, there are currently no industrially viable ‘Digital Process Twin’ models (DPTs) capable of efficiently and quickly predicting machining-induced stresses. By leveraging advances in ultra-high-speed in-situ experimental characterization of machining and finishing processes under plane strain (orthogonal/2D) conditions, we have developed a set of physics-based semi-analytical models to predict residual stress evolution in light of the extreme gradients of stress, strain and temperature, which are unique to these thermo-mechanical processes. Initial validation trials of this novel paradigm were carried out in Ti-6Al4V and AISI 4340 alloy …


An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed Jan 2021

An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed

Mechanical Engineering Graduate Research

Renewable microgrids are new solutions for enhanced security, improved reliability and boosted power quality and operation in power systems. By deploying different sources of renewables such as solar panels and wind units, renewable microgrids can enhance reducing the greenhouse gasses and improve the efficiency. This paper proposes a machine learning based approach for energy management in renewable microgrids considering a reconfigurable structure based on remote switching of tie and sectionalizing. The suggested method considers the advanced support vector machine for modeling and estimating the charging demand of hybrid electric vehicles (HEVs). In order to mitigate the charging effects of HEVs …


Clinical Evaluation Of Respiratory Rate Measurements On Copd (Male) Patients Using Wearable Inkjet-Printed Sensor, Ala'aldeen Al-Halhouli, Loiy Al-Ghussain, Osama Khallouf, Alexander Rabadi, Jafar Alawadi, Haipeng Liu, Khaled Al Oweidat, Fei Chen, Dingchang Zheng Jan 2021

Clinical Evaluation Of Respiratory Rate Measurements On Copd (Male) Patients Using Wearable Inkjet-Printed Sensor, Ala'aldeen Al-Halhouli, Loiy Al-Ghussain, Osama Khallouf, Alexander Rabadi, Jafar Alawadi, Haipeng Liu, Khaled Al Oweidat, Fei Chen, Dingchang Zheng

Mechanical Engineering Graduate Research

Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease that causes long-term breathing problems. The reliable monitoring of respiratory rate (RR) is very important for the treatment and management of COPD. Based on inkjet printing technology, we have developed a stretchable and wearable sensor that can accurately measure RR on normal subjects. Currently, there is a lack of comprehensive evaluation of stretchable sensors in the monitoring of RR on COPD patients. We aimed to investigate the measurement accuracy of our sensor on COPD patients. Methodology: Thirty-five patients (Mean ± SD of age: 55.25 ± 13.76 years) in different stages …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Wetting And Brazing Of Yig Ceramics Using Ag–Cuo–Tio2 Metal Filler, Wanqi Zhao, Shuye Zhang, Jian Yang, Tiesong Lin, Dusan P. Sekulic, Peng He Jan 2021

Wetting And Brazing Of Yig Ceramics Using Ag–Cuo–Tio2 Metal Filler, Wanqi Zhao, Shuye Zhang, Jian Yang, Tiesong Lin, Dusan P. Sekulic, Peng He

Mechanical Engineering Faculty Publications

The wetting and brazing of Y3Fe5O12 (YIG) ceramics with a Ag–8CuO–2TiO2 filler was investigated for the first time. For comparison, the wettability of a Ag–10CuO filler on YIG ceramics was similarly investigated. The Ag–8CuO–2TiO2 filler has an equilibrium contact angle of approximately 31 °C on the YIG substrate at 1000 °C; thus, its wettability is excellent. Moreover, its wettability exceeds that of Ag–10CuO. The microstructure and the interfacial structure between the filler and the substrate were determined using scanning electron microscopy, X-ray diffraction, EPMA and transmission electron microscopy. The liquid Ag–8CuO–2TiO2 filler …


Biofilm And Cell Adhesion Strength On Dental Implant Surfaces Via The Laser Spallation Technique, James D. Boyd, Arnold J. Stromberg, Craig S. Miller, Martha E. Grady Jan 2021

Biofilm And Cell Adhesion Strength On Dental Implant Surfaces Via The Laser Spallation Technique, James D. Boyd, Arnold J. Stromberg, Craig S. Miller, Martha E. Grady

Statistics Faculty Publications

OBJECTIVE: The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion.

METHODS: High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The …


Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen Dec 2020

Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen

Mechanical Engineering Faculty Publications

Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These …


Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman Dec 2020

Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman

Chemistry Faculty Publications

The quantification of atmospheric gases with small unmanned aerial systems (sUAS) is expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the impact of technologies. In this work, a calibrated sUAS is used to quantify the emissions of ammonia (NH3) gas from the exit stack a 0.1 MWth pilot-scale carbon capture system (CCS) employing a 5 M monoethanolamine (MEA) solvent to scrub CO2 from coal combustion flue gas. A comparison of the results using the sUAS against the ion chromatography technique with the EPA CTM-027 method for the standard emission sampling of NH3 …


Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito Dec 2020

Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito

Mechanical Engineering Faculty Publications

Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form of the conservation equations to create a system of equations by solving which, the far-field secondary atomization can be analyzed through predicting droplet size and velocity distributions of the involved phases. To validate the model predictions, experiments are conducted at ambient conditions using water, methanol, and acetone as model fluids with varying formulation properties, such as density, …


Subsystem Identification Of Feedback And Feedforward Systems With Time Delay, S. Alireza Seyyed Mousavi, Xingye Zhang, Thomas M. Seigler, Jesse B. Hoagg Dec 2020

Subsystem Identification Of Feedback And Feedforward Systems With Time Delay, S. Alireza Seyyed Mousavi, Xingye Zhang, Thomas M. Seigler, Jesse B. Hoagg

Mechanical Engineering Faculty Publications

We present an algorithm for identifying discrete-time feedback-and-feedforward subsystems with time delay that are interconnected in closed loop with a known subsystem. This frequency-domain algorithm uses only measured input and output data from a closed-loop discrete-time system, which is single input and single output. No internal signals are assumed to be measured. The orders of the unknown feedback and feedforward transfer functions are assumed to be known. We use a two-candidate-pool multi-convex-optimization approach to identify not only the feedback and feedforward transfer functions but also the feedback and feedforward time delay. The algorithm guarantees asymptotic stability of the identified closed-loop …


Dynamic Body-Weight Support To Boost Rehabilitation Outcomes In Patients With Non-Traumatic Spinal Cord Injury: An Observational Study, Justin P. Huber, Lumy Sawaki Nov 2020

Dynamic Body-Weight Support To Boost Rehabilitation Outcomes In Patients With Non-Traumatic Spinal Cord Injury: An Observational Study, Justin P. Huber, Lumy Sawaki

Neurology Faculty Publications

BACKGROUND: Dynamic body-weight support (DBWS) may play an important role in rehabilitation outcomes, but the potential benefit among disease-specific populations is unclear. In this study, we hypothesize that overground therapy with DBWS during inpatient rehabilitation yields greater functional improvement than standard-of-care in adults with non-traumatic spinal cord injury (NT-SCI).

METHODS: This retrospective cohort study included individuals diagnosed with NT-SCI and undergoing inpatient rehabilitation. All participants were recruited at a freestanding inpatient rehabilitation hospital. Individuals who trained with DBWS for at least three sessions were allocated to the experimental group. Participants in the historical control group received standard-of-care (i.e., no DBWS). …


Review Of Γ’ Rafting Behavior In Nickel-Based Superalloys: Crystal Plasticity And Phase-Field Simulation, Zhiyuan Yu, Xinmei Wang, Fuqian Yang, Zhufeng Yue, James C. M. Li Nov 2020

Review Of Γ’ Rafting Behavior In Nickel-Based Superalloys: Crystal Plasticity And Phase-Field Simulation, Zhiyuan Yu, Xinmei Wang, Fuqian Yang, Zhufeng Yue, James C. M. Li

Chemical and Materials Engineering Faculty Publications

Rafting is an important phenomenon of the microstructure evolution in nickel-based single crystal superalloys at elevated temperature. Understanding the rafting mechanism and its effect on the microstructure evolution is of great importance in determining the structural stability and applications of the single crystal superalloys. Phase-field method, which is an excellent tool to analyze the microstructure evolution at mesoscale, has been gradually used to investigate the rafting behavior. In this work, we review the crystal plasticity theory and phase-field method and discuss the application of the crystal plasticity theory and phase-field method in the analysis of the creep deformation and microstructure …


Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


100% Renewable Energy Grid For Rural Electrification Of Remote Areas: A Case Study In Jordan, Loiy Al-Ghussain, Mohammad Abujubbeh, Adnan Darwish Ahmad, Ahmad M. Abubaker, Onur Taylan, Murat Fahrioglu, Nelson K. Akafuah Sep 2020

100% Renewable Energy Grid For Rural Electrification Of Remote Areas: A Case Study In Jordan, Loiy Al-Ghussain, Mohammad Abujubbeh, Adnan Darwish Ahmad, Ahmad M. Abubaker, Onur Taylan, Murat Fahrioglu, Nelson K. Akafuah

Institute of Research for Technology Development Faculty Publications

Many developing countries suffer from high energy-import dependency and inadequate electrification of rural areas, which aggravates the poverty problem. In this work, Al-Tafilah in Jordan was considered as a case study, where the technical, economic, and environmental benefits of a decentralized hybrid renewable energy system that can match 100% of the city demand were investigated. A tri-hybrid system of wind, solar, and hydropower was integrated with an energy storage system and optimized to maximize the match between the energy demand and production profiles. The optimization aimed at maximizing the renewable energy system (RES) fraction while keeping the levelized cost of …


Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady Aug 2020

Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady

Physiology Faculty Publications

Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed …


University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith Aug 2020

University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights …


An Iterative Size Effect Model Of Surface Generation In Finish Machining, Ian S. Brown, Julius M. Schoop Jul 2020

An Iterative Size Effect Model Of Surface Generation In Finish Machining, Ian S. Brown, Julius M. Schoop

Mechanical Engineering Faculty Publications

In this work, a geometric model for surface generation of finish machining was developed in MATLAB, and subsequently verified by experimental surface roughness data gathered from turning tests in Ti-6Al4V. The present model predicts the behavior of surface roughness at multiple length scales, depending on feed, nose radius, tool edge radius, machine tool error, and material-dependent parameters—in particular, the minimum effective rake angle. Experimental tests were conducted on a commercial lathe with slightly modified conventional tooling to provide relevant results. Additionally, the model-predicted roughness was compared against pedigreed surface roughness data from previous efforts that included materials 51CrV4 and AL …


Characterization And Modeling Of Surface Roughness And Burr Formation In Slot Milling Of Polycarbonate, David Adeniji, Julius M. Schoop, Shehan Gunawardena, Craig Hanson, Muhammad Jahan Jun 2020

Characterization And Modeling Of Surface Roughness And Burr Formation In Slot Milling Of Polycarbonate, David Adeniji, Julius M. Schoop, Shehan Gunawardena, Craig Hanson, Muhammad Jahan

Mechanical Engineering Faculty Publications

Thermoplastic materials hold great promise for next-generation engineered and sustainable plastics and composites. However, due to their thermoplastic nature and viscoplastic material response, it is difficult to predict the properties of surfaces generated by machining. This is especially problematic in micro-channel machining, where burr formation and excessive surface roughness lead to poor component-surface integrity. This study attempts to model the influence of size effects, which occur due to the finite sharpness of any cutting tool, on surface finish and burr formation during micro-milling of an important thermoplastic material, polycarbonate. Experimental results show that the depth of cut does not affect …


Clinical Evaluation Of Stretchable And Wearable Inkjet-Printed Strain Gauge Sensor For Respiratory Rate Monitoring At Different Body Postures, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Fuad Habash, Haipeng Liu, Dingchang Zheng Jan 2020

Clinical Evaluation Of Stretchable And Wearable Inkjet-Printed Strain Gauge Sensor For Respiratory Rate Monitoring At Different Body Postures, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Fuad Habash, Haipeng Liu, Dingchang Zheng

Mechanical Engineering Graduate Research

Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was …


The Effect Of Cutting Edge Geometry, Nose Radius And Feed On Surface Integrity In Finish Turning Of Ti-6al4v, Ian S. Brown, Julius M. Schoop Jan 2020

The Effect Of Cutting Edge Geometry, Nose Radius And Feed On Surface Integrity In Finish Turning Of Ti-6al4v, Ian S. Brown, Julius M. Schoop

Mechanical Engineering Faculty Publications

While the respective effects of nose radius, feed and cutting edge geometry on surface integrity have each been studied at depth, coupling between these effects is not yet sufficiently understood. Recent studies have clearly established that cutting edge micro-geometries may not only have positive effects on tool-life, but can also be used to tailor surface integrity characteristics, such as surface roughness and near-surface severe plastic deformation. To further a more fundamental understanding of the effects of cutting edge micro-geometries on surface integrity, experimental turning data was generated for a varied range of cutting tool geometries and feeds. Scanning laser interferometry …