Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Mechanical Engineering

Anisotropic Material Behavior Of 3d Printed Fiber Composites, Jordan Garcia Jan 2023

Anisotropic Material Behavior Of 3d Printed Fiber Composites, Jordan Garcia

Theses and Dissertations--Mechanical Engineering

Literature has shown that 3D printed composites may have highly anisotropic mechanical properties due to variation in microstructure as a result of filament deposition process. Laminate composite theory, which is already used for composite products, has been proposed as an effective method for quantifying these mechanical characteristics. Starting with the analysis of comparing the printing orientation of premanufactured carbon fiber reinforced filament, the mechanical properties of 3D printed objects were examined. The mechanical properties changed not only as a result of machine choice, but how the sample is oriented along the printing bed. The analysis continued with looking at the …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.


Small-Satellite Attitude Control Using Sinusoidal Actuator Motion: Experiments On The International Space Station, K. Ryan Lush Jan 2022

Small-Satellite Attitude Control Using Sinusoidal Actuator Motion: Experiments On The International Space Station, K. Ryan Lush

Theses and Dissertations--Mechanical Engineering

In this work, we design, build, and test two 1.25U CubeSats. These small satellites were deployed on the International Space Station to perform attitude control experiments in microgravity. These CubeSats use an oscillating-mass actuation system for attitude control as opposed to traditional flywheels. Each CubeSat uses 3 pairs of servomotors to oscillate masses about 3 orthogonal axes. The servomotors have strict rotational stroke limits. Thus, they cannot spin continually. To oscillate each pair of masses, the angle of each servomotor is commanded using signals that are continuous and piecewise sinusoidal with amplitudes that do not violate the servomotor stroke constraints. …


Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh Jan 2021

Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh

Progress in Scale Modeling, an International Journal

For decades, traditional scale-modeling techniques have been relying on first-principles models (FPMs). FPMs have been used to find non-dimensional numbers (PIs) and identify normalized underlying forces and energies behind the phenomenon in focus. The two main challenges with FPM-based PIs extraction are finding the relevant PIs and proper correlations between PIs. The emergence and surge of data-driven modeling (DDM) provide a new opportunity to leverage experimental data in model development across scales/plants. In this paper, first, the two mentioned issues in PIs development will be elaborated to reveal the gap, and second, a new insight into scale modeling and similarity …


Structural Optimization Of Space Transit Vehicle Concept, Hercules, James Philip Rogers Jan 2021

Structural Optimization Of Space Transit Vehicle Concept, Hercules, James Philip Rogers

Theses and Dissertations--Mechanical Engineering

STRUCTURAL OPTIMIZATION OF SPACE TRANSIT VEHICLE CONCEPT, HERCULES:

A COMPARATIVE STUDY OF STRUCTURAL OPTIONS

Hercules is a vehicle concept developed by NASA Langley's Vehicle Analysis Branch to satisfy the need for sustainable transit between Earth, the moon, and Mars. Hercules features unprecedented abort capabilities and mission flexibility to aid in NASA's Mars campaign. By utilizing modern software to perform structural analysis and optimization for a large selection of stiffened panel concepts, beam concepts, and materials trends in the structural optimization emerge. These trends will be invaluable for the design of future spacecraft needed to fulfill similar roles.

The structural optimization …


Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan Jan 2021

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan

Theses and Dissertations--Mechanical Engineering

PTFE-based materials are widely used in areas of tribology, particularly in seal and bearing applications because of their outstanding self-lubricating properties. Often in dynamic seal applications there is a need for ultra-low mechanical friction loss between the sealing surfaces. Due to its extremely low friction coefficient, there is interest in employing Polytetrafluoroethylene (PTFE) materials in such applications. One challenging aspect of employing PTFE is that these materials are viscoelastic and plastic. This dissertation concentrates on the modeling of viscoelastic material response when used as mechanical face seals with a focus on PTFE-based materials. First, the viscoelastic characteristics are measured through …


Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia Jan 2019

Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia

Theses and Dissertations--Mechanical Engineering

3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the …


Dust Transportation And Settling Within The Mine Ventilation Network, Anand Kumar Jan 2019

Dust Transportation And Settling Within The Mine Ventilation Network, Anand Kumar

Theses and Dissertations--Mining Engineering

Dust is ubiquitous in underground mine activities. Continuous inhalation of dust could lead to irreversible occupational diseases. Dust particles of size lower than 75.0 µm, also known as float coal dust, can trigger a coal dust explosion following a methane ignition. Ventilation air carries the float coal dust from the point of production to some distance before it’s deposited on the surfaces of underground coal mine. Sources of dust are widely studied, but study of dust transportation has been mainly based on experimental data and simplified models. An understanding of dust transportation in the mine airways is instrumental in …


Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson Jan 2019

Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson

Theses and Dissertations--Mechanical Engineering

Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections. …


A Computational Study Of Patch Implantation And Mitral Valve Mechanics, Dara Singh Jan 2019

A Computational Study Of Patch Implantation And Mitral Valve Mechanics, Dara Singh

Theses and Dissertations--Mechanical Engineering

Myocardial infarction (i.e., a heart attack) is the most common heart disease in the United States. Mitral valve regurgitation, or the backflow of blood into the atrium from the left ventricle, is one of the complications associated with myocardial infarction. In this dissertation, a validated model of a sheep heart that has suffered myocardial infarction has been employed to study mitral valve regurgitation. The model was rebuilt with the knowledge of geometrical changes captured with MRI technique and is assigned with anisotropic, inhomogeneous, nearly incompressible and highly non-linear material properties. Patch augmentation was performed on its anterior leaflet, using a …


Scale Models Of Acoustic Scattering Problems Including Barriers And Sound Absorption, Nan Zhang Jan 2018

Scale Models Of Acoustic Scattering Problems Including Barriers And Sound Absorption, Nan Zhang

Theses and Dissertations--Mechanical Engineering

Scale modeling has been commonly used for architectural acoustics but use in other noise control areas is nominal. Acoustic scale modeling theory is first reviewed and then feasibility for small-scale applications, such as is common in the electronics industry, is investigated. Three application cases are used to examine the viability. In the first example, a scale model is used to determine the insertion loss of a rectangular barrier. In the second example, the transmission loss through parallel tubes drilled through a cylinder is measured and results are compared to a 2.85 times scale model with good agreement. The third example …


The Kentucky Re-Entry Universal Payload System (Krups): Sub-Orbital Flights, James Devin Sparks Jan 2018

The Kentucky Re-Entry Universal Payload System (Krups): Sub-Orbital Flights, James Devin Sparks

Theses and Dissertations--Mechanical Engineering

The Kentucky Re-entry Universal Payload System (KRUPS) is an adaptable testbed for atmosphere entry science experiments, with an initial application to thermal protection systems (TPS). Because of the uniqueness of atmospheric entry conditions that ground testing is unable to replicate, scientists principally rely on numerical models for predicting entry conditions. The KRUPS spacecraft, developed at the University of Kentucky, provides an inexpensive means of obtaining validation data to verify and improve these models.

To increase the technology readiness level (TRL) of the spacecraft, two sub-orbital missions were developed. The first mission, KUDOS, launched August 13th, 2017 on a Terrier-Improved Malamute …


Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika Jan 2018

Assessing The Spatial Accuracy And Precision Of Lidar For Remote Sensing In Agriculture, Surya Saket Dasika

Theses and Dissertations--Biosystems and Agricultural Engineering

The objective of this whole study was to evaluate a LiDAR sensor for high-resolution remote sensing in agriculture. A linear motion system was developed to precisely control the dynamics of LiDAR sensor in effort to remove uncertainty in the LiDAR position/velocity while under motion. A user control interface was developed to operate the system under different velocity profiles and log LiDAR data synchronous to the motion of the system. The LiDAR was then validated using multiple test targets with five different velocity profiles to determine the effect of sensor velocity and height above a target on measurement error. The results …


Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li Jan 2017

Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li

Theses and Dissertations--Mechanical Engineering

The data-driven adaptive algorithms are explored as a means of increasing the accuracy of Reynolds-averaged turbulence models. This dissertation presents two new data-driven adaptive computational models for simulating turbulent flow, where partial-but-incomplete measurement data is available. These models automatically adjust (i.e., adapts) the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k-ω turbulence equations to improve agreement between the simulated flow and a set of prescribed measurement data.

The first approach is the data-driven adaptive RANS k-ω (D-DARK) model. It is validated with three canonical flow geometries: pipe flow, the backward-facing step, and flow around an airfoil. For all 3 test …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


3d Infrastructure Condition Assessment For Rail Highway Applications, Teng Wang Jan 2016

3d Infrastructure Condition Assessment For Rail Highway Applications, Teng Wang

Theses and Dissertations--Civil Engineering

Highway roughness is a concern for both the motoring public and highway authorities. Roughness may even increase the risk of crashes. Rail-highway grade crossings are particularly problematic. Roughness may be due to deterioration or simply due to the way the crossing was built to accommodate grade change, local utilities, or rail elevation. With over 216,000 crossings in the US, maintenance is a vast undertaking. While methods are available to quantify highway roughness, no method exists to quantitatively assess the condition of rail crossings. Conventional inspection relies on a labor-intensive process of qualitative judgment. A quantifiable, objective and extensible procedure for …


A Framework For Sustainable Material Selection For Multi-Generational Components, Ryan T. Bradley Jan 2015

A Framework For Sustainable Material Selection For Multi-Generational Components, Ryan T. Bradley

Theses and Dissertations--Mechanical Engineering

The early stages of a product’s design are a critical time for decisions that impact the entire life-cycle cost. Product designers have mastered the first generation; however, they currently do not have the ability to know the impact of their decisions on the multi-generational view. This thesis aims at closing the gap between total life-cycle information and the traditional design process in order to harbor sustainable value creation among all stakeholders involved. A framework is presented that uses a combination of a life-cycle costing methodology and an evolutionary algorithm in order to achieve a sustainability assessment for a true multi-generational …


Airborne Path Frequency Based Substructuring Method And Its Applications, Rui He Jan 2015

Airborne Path Frequency Based Substructuring Method And Its Applications, Rui He

Theses and Dissertations--Mechanical Engineering

Frequency based substructuring (FBS) is routinely used to model structural dynamics. It provides a framework for connecting structural subsystems together, assessing path contributions, determining the effect of mount modification, and identifying inverse forces. In this work, FBS methods are extended to include acoustic subsystems and connecting pipes and ducts. Connecting pipes or ducts are modeled using the transfer matrix approach which is commonly used for modeling mufflers and silencers below the plane wave cutoff frequency. The suggested approach is validated using boundary element method (BEM) simulation. Applications of the procedure include determining airborne path contributions, the effect of treating ducts …


Computational Modeling Of Cardiac Biomechanics, Amir Nikou Jan 2015

Computational Modeling Of Cardiac Biomechanics, Amir Nikou

Theses and Dissertations--Mechanical Engineering

The goal of this dissertation was to develop a realistic and patient-specific computational model of the heart that ultimately would help medical scientists to better diagnose and treat heart diseases. In order to achieve this goal, a three dimensional finite element model of the heart was created using magnetic resonance images of the beating pig heart. This model was loaded by the pressure of blood inside the left ventricle which was measured by synchronous catheterization. A recently developed structurally based constitutive model of the myocardium was incorporated in the finite element solver to model passive left ventricular myocardium. Additionally, an …


Inkjet Printing: Facing Challenges And Its New Applications In Coating Industry, Sadegh Poozesh Jan 2015

Inkjet Printing: Facing Challenges And Its New Applications In Coating Industry, Sadegh Poozesh

Theses and Dissertations--Mechanical Engineering

This study is devoted to some of the most important issues for advancing inkjet printing for possible application in the coating industry with a focus on piezoelectric droplet on demand (DOD) inkjet technology. Current problems, as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes, are discussed and then potential solutions identified. For satellite droplets, it is shown that liquid filament break-up behavior can be predicted by using a combination of two pi-numbers, including the Weber number, We and the Ohnesorge number, Oh, or the Reynolds number, Re, and the Weber number, …


A Design Pathfinder With Material Correlation Points For Inflatable Systems, Jared T. Fulcher Jan 2014

A Design Pathfinder With Material Correlation Points For Inflatable Systems, Jared T. Fulcher

Theses and Dissertations--Mechanical Engineering

The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear …


Numerical Analysis Of Droplet Formation And Transport Of A Highly Viscous Liquid, Peiding Wang Jan 2014

Numerical Analysis Of Droplet Formation And Transport Of A Highly Viscous Liquid, Peiding Wang

Theses and Dissertations--Mechanical Engineering

Drop-on-demand (DOD) inkjet print-head has a major share of the market due to simplicity and feasibility of miniature system. The efficiency of droplet generation from DOD print-head is a result of several factors, include viscosity, surface tension, nozzle size, density, driving waveform (wave shape, frequency, and amplitude), etc. Key roles in the formation and behavior of liquid jets and drops combine three dimensionless groups: Reynolds number, Weber number and Ohnesorge number. These dimensionless groups provide some bounds to the “printability” of the liquid. Adequate understanding of these parameters is essential to improve the quality of droplets and provide guidelines for …


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element …