Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 53

Full-Text Articles in Mechanical Engineering

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri Jan 2023

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles are equipped with Thermal Protection Systems (TPS) that encounter high heat rates and protect the payload while entering a planetary atmosphere. For most missions that interest NASA, ablative materials are used as TPS. These materials undergo several mass and energy transfer mechanisms to absorb intense heat. The size and construction of the TPS are based on the composition of the planetary atmosphere and the impact of various ablative mechanisms on the flow field and the material. Therefore, it is essential to quantify the rates of different ablative phenomena to model TPS accurately. In this work, the impact of …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.


A Decoupled Engineering Methodology For Accurate Prediction Of Ablative Surface Boundary Conditions In Thermal Protection Systems, Justin Cooper Jan 2022

A Decoupled Engineering Methodology For Accurate Prediction Of Ablative Surface Boundary Conditions In Thermal Protection Systems, Justin Cooper

Theses and Dissertations--Mechanical Engineering

The main objective of the present work is to demonstrate a method for prediction of aerothermal environments in the engineering design of hypersonic vehicles as an alternative to the current heritage method. Flat plate and stagnation point boundary layer theory require multiple assumptions to establish the current engineering paradigm. Chief among these assumptions is the similarity between mass and heat transfer. Origins of these assumptions are demonstrated and their relationship to conservative engineering design is analyzed, as well as conditions where they possibly break down. An alternative approach for assessing aerothermal environments from the fluid domain is presented, which permits …


Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay Jan 2022

Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay

Theses and Dissertations--Mechanical Engineering

This dissertation presents new results on multi-agent formation control and applies the new control algorithms to quadrotor unmanned air vehicles. First, this dissertation presents a formation control algorithm for double-integrator agents, where the formation is time varying and the agents’ controls satisfy a priori bounds (e.g., the controls accommodate actuator saturation). The main analytic results provide sufficient conditions such that all agents converge to the desired time-varying relative positions with one another and the leader, and have a priori bounded controls (if applicable). We also present results from rotorcraft experiments that demonstrate the algorithm with time-varying formations and bounded controls. …


In-Situ Characterization Of Burr Formation In Finish Machining Of Inconel 718, Hamzah M. Zannoun Jan 2022

In-Situ Characterization Of Burr Formation In Finish Machining Of Inconel 718, Hamzah M. Zannoun

Theses and Dissertations--Mechanical Engineering

One of the undesirable byproducts that occur during the machining process is the development of burrs, which are defined as rough excess material that forms around the geometric discontinuities of a part. Burrs are especially problematic because they have negative impacts across the triple bottom line: economic, environmental, societal. For one, they are expensive to remove because the deburring process is entirely manual and requires skill. Further, burr material is typically discarded which is adding to the already mounting waste generated from machining such as in coolant and chip disposal. Lastly, there are many societal implications, such as operator injury …


Numerical And Scaling Study On Application Of Inkjet Technology To Automotive Coating, Masoud Arabghahestani Dr. Jan 2022

Numerical And Scaling Study On Application Of Inkjet Technology To Automotive Coating, Masoud Arabghahestani Dr.

Theses and Dissertations--Mechanical Engineering

A thorough literature review identified lack of precision control over quality of droplets generated by the currently available industrial sprayers and a growing need for higher quality droplets in the coating industry. Particularly, lack of knowledge and understanding in continuous inkjets (CIJ) and drop-on-demand (DOD) technologies is identified as significant. Motivated by these needs, this dissertation is dedicated to computational fluid dynamics (CFD) and scaling studies to improve existing inkjet technologies and develop new designs of efficient coating with single and/or multiple piezoelectric sensors to produce on-demand droplets. This dissertation study aims at developing a new DOD type coating technology, …


Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz Jan 2022

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz

Theses and Dissertations--Mechanical Engineering

Advances in the miniaturization of powerful electronic components and motors, the democratization of global navigation satellite systems (GNSS), and improvements in the performance, safety, and cost in lithium batteries has led to the proliferation of small and relatively inexpensive unmanned aerial vehicles (UAVs). Many of these UAVs are of the multi-rotor design, however, fixed-wing designs are often more efficient than rotary-wing aircraft, leading to a reduction in the power required for a UAV of a given mass to stay airborne. Autonomous cooperation between multiple UAVs would enable them to complete objectives that would be difficult or impossible for a single …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Scale Model Test To Estimate Thermal Damage By Fire In Aircraft Cargo, Jian Gao, Tsuneyoshi Matsuoka, Yuji Nakamura Feb 2021

Scale Model Test To Estimate Thermal Damage By Fire In Aircraft Cargo, Jian Gao, Tsuneyoshi Matsuoka, Yuji Nakamura

Progress in Scale Modeling, an International Journal

The Federal Aviation Administration (FAA) requires fire detectors to alarm within one minute of the start of a fire in cargo compartments of airplanes. To determine whether such alarm timing works, investigations of the thermal damage to ceilings and other structures during the early stage of a fire were accomplished to demonstrate compliance with these FAA regulations. The objective was to test the feasibility of predicting convective heat transfer in early stage of a cargo compartment fire by conducting reduced scale (lab scale) experiments. First, the scaling laws was derived and validated. Then, full-scale and half-scale experiments were performed with …


Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh Jan 2021

Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh

Progress in Scale Modeling, an International Journal

For decades, traditional scale-modeling techniques have been relying on first-principles models (FPMs). FPMs have been used to find non-dimensional numbers (PIs) and identify normalized underlying forces and energies behind the phenomenon in focus. The two main challenges with FPM-based PIs extraction are finding the relevant PIs and proper correlations between PIs. The emergence and surge of data-driven modeling (DDM) provide a new opportunity to leverage experimental data in model development across scales/plants. In this paper, first, the two mentioned issues in PIs development will be elaborated to reveal the gap, and second, a new insight into scale modeling and similarity …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Structural Optimization Of Space Transit Vehicle Concept, Hercules, James Philip Rogers Jan 2021

Structural Optimization Of Space Transit Vehicle Concept, Hercules, James Philip Rogers

Theses and Dissertations--Mechanical Engineering

STRUCTURAL OPTIMIZATION OF SPACE TRANSIT VEHICLE CONCEPT, HERCULES:

A COMPARATIVE STUDY OF STRUCTURAL OPTIONS

Hercules is a vehicle concept developed by NASA Langley's Vehicle Analysis Branch to satisfy the need for sustainable transit between Earth, the moon, and Mars. Hercules features unprecedented abort capabilities and mission flexibility to aid in NASA's Mars campaign. By utilizing modern software to perform structural analysis and optimization for a large selection of stiffened panel concepts, beam concepts, and materials trends in the structural optimization emerge. These trends will be invaluable for the design of future spacecraft needed to fulfill similar roles.

The structural optimization …


Modeling Thin Layers In Material Response Solvers, Christen Setters Jan 2021

Modeling Thin Layers In Material Response Solvers, Christen Setters

Theses and Dissertations--Mechanical Engineering

Thermal Protection Systems (TPS) are a necessary component for atmospheric entry. Most TPS contain thin layers of various materials such as ceramic coatings, pore sealers and bonding agents. When modeling TPS, these thin layers are often neglected due to the difference in scale between the TPS (centimeters) and the thin layers (micrometers). In this study, a volume-averaging flux-conservation method is implemented in the governing equations of a finite volume material response code. The model proposes the addition of a volume and area fraction coefficient which utilizes a weighted-averaging between the amount of thin layer and heat shield material in a …


Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi Jan 2021

Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi

Theses and Dissertations--Mechanical Engineering

This dissertation addresses control of relative positions and orientations of formation flying satellites using magnetic interactions. Electromagnetic formation flight (EMFF) is implemented, in which each satellite is equipped with a set of electromagnetic coils to generate an electromagnetic field. Traditional EMFF technique applies DC magnetic fields which lead to a nonlinear and highly coupled formation dynamics that allow for only position or orientation control of the satellites. We present a new frequency multiplexing method, which is a technique that uses multi-frequency sinusoidal controls, to approximately decouple the formation dynamics and to provide enough controls for both position and orientation control. …


Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson Jan 2021

Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson

Theses and Dissertations--Mechanical Engineering

In July of 2019, a flight campaign was conducted using semi-autonomous Unmanned Aerial Vehicles (UAVs) at the Port Alma Kruger Energy wind farm in Ontario, Canada, to study various aspects of wind turbine wake evolution. Horizontal transects across the wakes were measured using modified fixed-wing aircraft fitted with a five-hole probe to measure the wind velocity vector. Reference boundary layer conditions were measured by an octocopter with an assortment of mounted sensors flying vertical profiles upstream of the turbines. Three experiments were conducted during the campaign, which consisted of a study on wake behavior during the morning boundary layer transition, …


Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii Jan 2020

Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii

Theses and Dissertations--Biomedical Engineering

It has been observed through numerous academic and governmental agency studies that pediatric all-terrain vehicle ridership carries significant risk of injury and death. While no doubt valuable to safety, the post-hoc approach employed in these studies does little to explain the why and how behind the risk factors. Furthermore, there has been no prolonged, widespread, organized, and concerted effort to reconstruct and catalog the details and causes of the large (20,000+) number of ATV-related injuries that occur each year as has been done for road-based motor vehicle accidents. This dissertation takes the opposite approach from a meta-analysis and instead examines …


Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown Jan 2020

Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown

Theses and Dissertations--Mechanical Engineering

Finish machining is an essential manufacturing process that is used to enhance the mechanical characteristics of critical components. The deformation that occurs at the tool and workpiece interface in finish machining significantly affects a host of component properties, commonly referred to as “surface integrity” properties. Surface roughness is a machining deformation-affected characteristic that is of high relevance in contemporary manufacturing. However, over recent decades it has been made clear that the material properties of the deformed surface layers are relevant to component performance as well. Predicting the overall surface quality of a machined component is of great relevance to the …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel Jan 2020

Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel

Theses and Dissertations--Mechanical Engineering

Atmospheric entry occurs at very high speeds which produces high temperature around the vehicle. Entry vehicles are thus equipped with Thermal Protection Systems which are usually made of ablative materials. This dissertation presents a new solver that models the atmospheric entry environment and the thermal protection systems. In this approach, both the external flow and the porous heat shield are solved using the same computational domain. The new solver uses the Volume Averaged Navier-Stokes Equations adapted for hypersonic non-equilibrium flow, and is thus valid for both domains. The code is verified using analytical problems, set of benchmarks and also a …


Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill Jan 2019

Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill

Theses and Dissertations--Mechanical Engineering

Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis …


Design And Testing Of A Wind Energy Harnessing System For Forced Convective Drying Of Grain In Low Wind Speed, Warm And Humid Climates, Francis Akumabi Agbali Jan 2019

Design And Testing Of A Wind Energy Harnessing System For Forced Convective Drying Of Grain In Low Wind Speed, Warm And Humid Climates, Francis Akumabi Agbali

Theses and Dissertations--Biosystems and Agricultural Engineering

Forced convective drying using a wind turbine mechanically connected to a ventilation fan was hypothesized for low cost and rapid grain drying in developing countries. The idea was tested using an expandable wind turbine blade system with variable pitch, at low wind speeds in a wind tunnel. The design was based on empirical and theoretical models embedded in a graphical user interface (GUI) created to estimate airflow-power requirements for drying ear corn. Output airflow (0.0016 - 0.0052 m3kg-1s-1) increased within the study wind speed range (2.0 - 5.5 m/s). System efficiency peak (8.6%) was …


Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith Jul 2018

Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

This paper discusses results of the CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) project dedicated to developing, fielding, and evaluating integrated small unmanned aircraft systems (sUAS) for enhanced atmospheric physics measurements. The project team includes atmospheric scientists, meteorologists, engineers, computer scientists, geographers, and chemists necessary to evaluate the needs and develop the advanced sensing and imaging, robust autonomous navigation, enhanced data communication, and data management capabilities required to use sUAS in atmospheric physics. Annual integrated evaluation of the systems in coordinated field tests are being used to validate sensor performance while integrated into various sUAS platforms. …


Fracture Initiation In A Transversely Isotropic Solid: Transient Three Dimensional Analysis, Louis Milton Brock May 2018

Fracture Initiation In A Transversely Isotropic Solid: Transient Three Dimensional Analysis, Louis Milton Brock

Mechanical Engineering Faculty Publications

A transversely isotropic solid is at rest, and contains a semi-infinite, plane crack. The axis of rotational material symmetry lies in the crack plane. Application of normal point forces to each face of the crack causes transient 3D growth. The related problem of discontinuities in displacement and traction that exist on regions that exhibit dynamic similarity is first considered. Analytic results are obtained in integral transform space. These lead to equations of the Wiener–Hopf type for the fracture problem. Analytic solutions are again obtained and, upon inversion, subjected to a dynamic energy release rate criterion that includes kinetic energy. A …


Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi Jan 2018

Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi

Theses and Dissertations--Mechanical Engineering

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length-scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions, due to the imperfect characterization of the upper bound of the inertial cascade by the integral length-scale. When a length-scale based on Townsend's …


Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar Jan 2018

Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar

Theses and Dissertations--Mining Engineering

Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, …


Laminar And Turbulent Study Of Combustion In Stratified Environments Using Laser Based Measurements, Stephen William Grib Jan 2018

Laminar And Turbulent Study Of Combustion In Stratified Environments Using Laser Based Measurements, Stephen William Grib

Theses and Dissertations--Mechanical Engineering

Practical gas turbine engine combustors create extremely non-uniform flowfields, which are highly stratified making it imperative that similar environments are well understood. Laser diagnostics were utilized in a variety of stratified environments, which led to temperature or chemical composition gradients, to better understand autoignition, extinction, and flame stability behavior. This work ranged from laminar and steady flames to turbulent flame studies in which time resolved measurements were used.

Edge flames, formed in the presence of species stratification, were studied by first developing a simple measurement technique which is capable of estimating an important quantity for edge flames, the advective heat …


Multiphase Interaction In Low Density Volumetric Charring Ablators, Ali D. Omidy Jan 2018

Multiphase Interaction In Low Density Volumetric Charring Ablators, Ali D. Omidy

Theses and Dissertations--Mechanical Engineering

The present thesis provides a description of historical and current modeling methods with recent discoveries within the ablation community. Several historical assumptions are challenged, namely the presence of water in Thermal Protection System (TPS) materials, presence of coking in TPS materials, non-uniform elemental production during pyrolysis reactions, and boundary layer gases, more specifically oxygen, interactions with the charred carbon interface.

The first topic assess the potential effect that water has when present within the ablator by examining the temperature prole histories of the recent flight case Mars Science Laboratory. The next topic uses experimental data to consider the instantaneous gas …


Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar Jan 2018

Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar

Theses and Dissertations--Mechanical Engineering

We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies.


Transient Analysis Of Fracture Initiation In A Coupled Thermoelastic Solid, Louis Milton Brock Nov 2017

Transient Analysis Of Fracture Initiation In A Coupled Thermoelastic Solid, Louis Milton Brock

Mechanical Engineering Faculty Publications

An isotropic, thermoelastic solid is initially at rest at uniform (absolute) temperature, and contains a semi-infinite, plane crack. Application of in-plane and normal point forces to each face of the crack causes transient 3D growth. The related problem of discontinuities in temperature and displacement that exist on regions that exhibit dynamic similarity is first considered. Asymptotic expressions, whose inverses are valid near the crack edges for short times, are obtained in integral transform space. These lead to equations of the Wiener–Hopf type for the fracture problem. Analytical solutions are obtained and, upon inversion, subjected to a dynamic energy release rate …