Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Nanoparticles

PDF

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu Mar 2015

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu

Fanglin Chen

Tin–oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800 °C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.


Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder Dec 2011

Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder

A.S. Md Abdul Haseeb

No abstract provided.


A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca J. Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark A. Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh E. Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou Dec 2011

A Benchmark Study On The Thermal Conductivity Of Nanofluids, Jacopo Buongiorno, David C. Venerus, Naveen Prabhat, Thomas Mckrell, Jessica Townsend, Rebecca J. Christianson, Yuriv V. Tolmachev, Pawel Keblinski, Lin-Wen Hu, Jorge L. Alvarado, In Cheol Bang, Sandra W. Bishnoi, Marco Bonetti, Frank Botz, Anselmo Cecere, Yun Chang, Gang Chen, Haisheng Chen, Sung Jae Chung, Minking K. Chyu, Sarit K. Das, Roberto Di Paola, Yulong Ding, Frank Dubois, Grzegorz Dzido, Jacob Eapen, Werner Escher, Denis Funfschilling, Quentin Galand, Jinwei Gao, Patricia E. Gharagozloo, Kenneth E. Goodson, Jorge Gustavo Gutierrez, Haiping Hong, Mark Horton, Kyo Sik Hwang, Carlo S. Iorio, Seok Pil Jang, Andrzej B. Jarzebski, Yiran Jiang, Stephan Kabelac, Liwen Jin, Aravind Kamath, Mark A. Kedzierski, Lim Geok Kieng, Chongyoup Kim, Ji-Hyun Kim, Seokwon Kim, Seung Hyun Lee, Kai Choong Leong, Indranil Manna, Bruno Michel, Rui Ni, Hrishikesh E. Patel, John Philip, Dimos Poulikakos, Cecil Reynaud, Raffaele Savino, Pawan K. Singh, Pengxiang Song, Thirumalachari Sundararajan, Elena Timofeeva, Todd Tritcak, Aleksandr N. Turanov, Stefan Van Vaerenbergh, Dongsheng Wen, Sanjeeva Witharana, Chun Yang, Wei-Hsun Yeh, Xiao-Zheng Zhao, Sheng-Qi Zhou

Jessica Townsend

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about …