Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Pre-Impact Lower Extremity Posture And Brake Pedal Force Predict Foot And Ankle Forces During An Automobile Collision, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert Mar 2014

Pre-Impact Lower Extremity Posture And Brake Pedal Force Predict Foot And Ankle Forces During An Automobile Collision, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert

Anne Su Ph.D.

Background: The purpose of this study was to determine how a driver’s foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. Method of Approach: A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction …


A Weighted Least-Squares Method For Inverse Dynamic Analysis, Antonie Van Den Bogert, Anne Su Mar 2014

A Weighted Least-Squares Method For Inverse Dynamic Analysis, Antonie Van Den Bogert, Anne Su

Anne Su Ph.D.

Internal forces in the human body can be estimated from measured movements and external forces using inverse dynamic analysis. Here we present a general method of analysis which makes optimal use of all available data, and allows the use of inverse dynamic analysis in cases where external force data is incomplete. The method was evaluated for the analysis of running on a partially instrumented treadmill. It was found that results correlate well with those of a conventional analysis where all external forces are known.


Development And Validation Of A 3-D Model To Predict Knee Joint Loading During Dynamic Movement, Scott G. Mclean, Anne Su, Antonie J. Van Den Bogert Mar 2014

Development And Validation Of A 3-D Model To Predict Knee Joint Loading During Dynamic Movement, Scott G. Mclean, Anne Su, Antonie J. Van Den Bogert

Anne Su Ph.D.

The purpose of this study was to develop a subject-specific 3-D model of the lowerextremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across …


Horses Damp The Spring In Their Step, Alan Wilson, M. Mcguigan, Anne Su, Antonie Van Den Bogert Mar 2014

Horses Damp The Spring In Their Step, Alan Wilson, M. Mcguigan, Anne Su, Antonie Van Den Bogert

Anne Su Ph.D.

The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle–tendon units1, 2.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints3, 4. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle5. Despite being apparently redundant for …


Foot And Ankle Forces During An Automobile Collision: The Influence Of Muscles, Elizabeth Hardin, Anne Su, Antonie Van Den Bogert Mar 2014

Foot And Ankle Forces During An Automobile Collision: The Influence Of Muscles, Elizabeth Hardin, Anne Su, Antonie Van Den Bogert

Anne Su Ph.D.

Muscles have a potentially important effect on lower extremity injuries during an automobile collision. Computational modeling can be a powerful tool to predict these effects and develop protective interventions. Our purpose was to determine how muscles influence peak foot and ankle forces during an automobile collision. A 2-D bilateral musculoskeletal model was constructed with seven segments. Six muscle groups were included in the right lower extremity, each represented by a Hill muscle model. Vehicle deceleration data were applied as input and the resulting movements were simulated. Three models were evaluated: no muscles (NM), minimal muscle activation at a brake pedal …


Sagittal Plane Biomechanics Cannot Injure The Acl During Sidestep Cutting, Scott G. Mclean, Xuemei Huang, Anne Su, Antonie J. Van Den Bogert Mar 2014

Sagittal Plane Biomechanics Cannot Injure The Acl During Sidestep Cutting, Scott G. Mclean, Xuemei Huang, Anne Su, Antonie J. Van Den Bogert

Anne Su Ph.D.

Background. Knee joint sagittal plane forces are a proposed mechanism of anterior cruciate ligament injury during sport movements such as sidestep cutting. Ligament force magnitudes for these movements however, remain unknown. The need to examine injury-causing events suggests elucidation via model-based investigations is possible. Using this approach, the current study determined whether sagittal plane knee loading during sidestep cutting could in isolation injure the anterior cruciate ligament. Methods. Experiments were performed on subject-specific forward dynamic musculoskeletal models, generated from data obtained from 10 male and 10 female athletes. Models were optimized to simulate subject-specific cutting movements. Random perturbations (n=5000) were …