Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Robotics

2013

Keyword
Publication
File Type

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Jul 2013

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Abhijit Saxena

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Haptography: Capturing And Recreating The Rich Feel Of Real Surfaces, Katherine J. Kuchenbecker, Joseph Romano, William Mcmahan Mar 2013

Haptography: Capturing And Recreating The Rich Feel Of Real Surfaces, Katherine J. Kuchenbecker, Joseph Romano, William Mcmahan

William McMahan

Haptic interfaces, which allow a user to touch virtual and remote environments through a hand-held tool, have opened up exciting new possibilities for applications such as computer-aided design and robot-assisted surgery. Unfortunately, the haptic renderings produced by these systems seldom feel like authentic re-creations of the richly varied surfaces one encounters in the real world. We have thus envisioned the new approach of haptography, or haptic photography, in which an individual quickly records a physical interaction with a real surface and then recreates that experience for a user at a different time and/or place. This paper presents an overview of …


Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Jan 2013

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Christopher N. Roman

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.


Autonomous Underwater Vehicles As Tools For Deep-Submergence Archaeology, Christopher N. Roman, Ian Roderick Mather Jan 2013

Autonomous Underwater Vehicles As Tools For Deep-Submergence Archaeology, Christopher N. Roman, Ian Roderick Mather

Christopher N. Roman

Marine archaeology beyond the capabilities of scuba divers is a technologically enabled field. The tool suite includes ship-based systems such as towed side-scan sonars and remotely operated vehicles, and more recently free-swimming autonomous underwater vehicles (AUVs). Each of these platforms has various imaging and mapping capabilities appropriate for specific scales and tasks. Broadly speaking, AUVs are becoming effective tools for locating, identifying, and surveying archaeological sites. This paper discusses the role of AUVs in this suite of tools, outlines some specific design criteria necessary to maximize their utility in the field, and presents directions for future developments. Results are presented …


Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman Jan 2013

Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman

Christopher N. Roman

This paper presents an overview and initial testing results for a shallow water Lagrangian float designed to operate in coastal settings. The presented effort addresses the two main characteristics of the shallow coastal environment that preclude the direct of use of many successfully deep water floats, namely the higher variation of water densities near the coast compared with the open ocean and the highly varied bathymetry. Our idea is to develop a high capacity dynamic auto-ballasting system that is able to compensate for the expected seawater density variation over a broad range of water temperatures and salinities while using measurements …


Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman Jan 2013

Development Of A New Lagrangian Float For Studying Coastal Marine Ecosystems, Alex Schwithal, Chris Roman

Christopher N. Roman

This paper presents an overview and initial testing results for a shallow water Lagrangian float designed to operate in coastal settings. The presented effort addresses the two main characteristics of the shallow coastal environment that preclude the direct of use of many successfully deep water floats, namely the higher variation of water densities near the coast compared with the open ocean and the highly varied bathymetry. Our idea is to develop a high capacity dynamic auto-ballasting system that is able to compensate for the expected seawater density variation over a broad range of water temperatures and salinities while using measurements …


Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn Jan 2013

Deep Sea Underwater Robotic Exploration In The Ice-Covered Arctic Ocean With Auvs, Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan M. Eustice, Chris Roman, Michael Jakuba, Claire Willis, Taichi Sato, Ko-Ichi Nakamura, Robert A. Sohn

Christopher N. Roman

The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine biology, chemistry and geology associated with hydrothermal venting on the section of the mid-ocean ridge known as the Gakkel Ridge. Unlike previous research expeditions to the Arctic the focus was on high resolution imaging and sampling of the deep seafloor. To accomplish our goals we …