Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Electro-Mechanical Systems

Tianxiang Nan

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Self-Biased 215mhz Magnetoelectric Nems Resonator For Ultra-Sensitive Dc Magnetic Field Detection, Tianxiang Nan Jun 2013

Self-Biased 215mhz Magnetoelectric Nems Resonator For Ultra-Sensitive Dc Magnetic Field Detection, Tianxiang Nan

Tianxiang Nan

High sensitivity magnetoelectric sensors with their lectromechanical resonance frequencies , 200 kHz have been recently demonstrated using gnetostrictive/piezoelectric magnetoelectric eterostructures. In this work, we demonstrate a novel agnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) 3 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection ...


Voltage Impulse Induced Bistable Magnetization Switching In Multiferroic Heterostructures, Tianxiang Nan Dec 2010

Voltage Impulse Induced Bistable Magnetization Switching In Multiferroic Heterostructures, Tianxiang Nan

Tianxiang Nan

We report on voltage impulse induced reversible bistable magnetization switching in FeGaB/lead zirconate titanate (PZT) multiferroic heterostructures at room temperature. This was realized through strain-mediated magnetoelectric coupling between ferroelectric PZT and ferromagnetic FeGaB layer. Two reversible and stable voltage-impulse induced mechanical strain states were obtained in the PZT by applying an electric field impulse with its amplitude smaller than the electric coercive field, which led to reversible voltage impulse induced bistable magnetization switching. These voltage impulse induced bistable magnetization switching in multiferroic heterostructures provides a promising approach to power efficient bistable magnetization switching that is crucial for information storage.