Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Civil and Environmental Engineering

Polymer-matrix composites

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Experimental And Fem Study Of Thermal Cycling Induced Microcracking In Carbon/Epoxy Triaxial Braided Composites, Chao Zhang, Wieslaw Binienda, Gregory Morscher, Richard Martin, Lee Kohlman Sep 2015

Experimental And Fem Study Of Thermal Cycling Induced Microcracking In Carbon/Epoxy Triaxial Braided Composites, Chao Zhang, Wieslaw Binienda, Gregory Morscher, Richard Martin, Lee Kohlman

Wieslaw K. Binienda

The microcrack distribution and mass change in T700s/PR520 and T700s/3502 carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between −55 °C and 120 °C. Transverse microcrack morphology was investigated using X-ray computed tomography. The differing performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction …


Experimental And Fem Study Of Thermal Cycling Induced Microcracking In Carbon/Epoxy Triaxial Braided Composites, Chao Zhang, Wieslaw Binienda, Gregory Morscher, Richard Martin, Lee Kohlman Apr 2015

Experimental And Fem Study Of Thermal Cycling Induced Microcracking In Carbon/Epoxy Triaxial Braided Composites, Chao Zhang, Wieslaw Binienda, Gregory Morscher, Richard Martin, Lee Kohlman

Dr. Gregory N. Morscher

The microcrack distribution and mass change in T700s/PR520 and T700s/3502 carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between −55 °C and 120 °C. Transverse microcrack morphology was investigated using X-ray computed tomography. The differing performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction …