Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann Jul 2014

Implementation Of Analytical Fatigue Models Into Opensim To Predict The Effects Of Fatigue On Anterior Cruciate Ligament Loading, Michael A. Samann

Mechanical & Aerospace Engineering Theses & Dissertations

The anterior cruciate ligament (ACL) provides stability to the knee joint while performing activities such as a side step cut. Neuromuscular fatigue, a reduction in muscle force producing capabilities, alters lower extremity mechanics while performing a side step cut and may increase the risk of ACL injury, particularly in females. Musculoskeletal modeling allows for the measurement of muscle forces, which are difficult to measure in-vivo. Therefore, musculoskeletal modeling, may improve our understanding of the effects of neuromuscular fatigue on muscle force production and loading of the ACL. Therefore, the purpose of this study was to develop a musculoskeletal model which …


Nonlinear Response And Fatigue Estimation Of Aerospace Curved Surface Panels To Acoustic And Thermal Loads, Adam Przekop Jul 2003

Nonlinear Response And Fatigue Estimation Of Aerospace Curved Surface Panels To Acoustic And Thermal Loads, Adam Przekop

Mechanical & Aerospace Engineering Theses & Dissertations

This work presents a finite element modal formulation for large amplitude free vibration of arbitrary laminated composite shallow shells. The system equations of motion are formulated first in the physical structural-node degrees of freedom (DOF). Then, the system is transformed into general Duffing-type modal equations with modal amplitudes of coupled linear bending-inplane modes. The linear bending-inplane coupling is due to the shell curvature as well as unsymmetric lamination stacking. Multiple modes, inplane inertia, and the first-order transverse shear deformation for composites are considered in the formulation. A triangular shallow shell finite element is developed from an extension of the triangular …


Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …


Three-Dimensional Elastic-Plastic Finite Element Analysis Of Fatique Crack Growth And Closure, Rahmatollah G. Chermahini Jul 1986

Three-Dimensional Elastic-Plastic Finite Element Analysis Of Fatique Crack Growth And Closure, Rahmatollah G. Chermahini

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this study was to develop a three-dimensional, elastic-plastic, finite element analysis to investigate crack extension and closure under cyclic loading. The initial study concentrated on the behavior of a straight through crack in a finite-thickness plate subjected to tensile loading (middle-crack tension specimen). The finite element model was composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material was assumed to be elastic-perfectly plastic. Zienkiewicz's "initial-stress" method, von Mises' yield criterion, and Drucker's normality condition, under small-strain assumptions, were used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary …