Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi Aug 2023

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi

Mechanical & Aerospace Engineering Theses & Dissertations

In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (< 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance.


Roboretrieve--In A Dual Role As A Hand-Held Surgical Robot And A Collaborative Robot End-Effector To Perform Spillage-Free Specimen Retrieval In Laparoscopy, Siqin Dong May 2023

Roboretrieve--In A Dual Role As A Hand-Held Surgical Robot And A Collaborative Robot End-Effector To Perform Spillage-Free Specimen Retrieval In Laparoscopy, Siqin Dong

Mechanical & Aerospace Engineering Theses & Dissertations

Recent advances in surgical robotics attempt to overcome limitations of manual surgery by augmenting the surgeon’s capabilities while performing suturing, incision, retraction, and retrieval tasks. This dissertation presents novel approaches for spillage-free specimen retrieval in confined spaces, targeted toward the surgical domain of minimally invasive robotic surgery. The retrieval task involves extraction of a resected specimen, residing in the abdominal cavity, completely outside of the patient’s body. A major challenge in this context is the spillage of content being retrieved, which may cause dissemination of malignancy. To address this challenge, this dissertation develops RoboRetrieve, a portable hand-held robot that …


Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang Aug 2022

Collaborative Robotics Strategies For Handling Non-Repetitive Micro-Drilling Tasks Characterized By Low Structural Mechanical Impedance, Xiangyu Wang

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical micro-drilling finds widespread use in diverse applications ranging from advanced manufacturing to medical surgery. This dissertation aims to develop techniques that allow programming of robots to perform effective micro-drilling tasks. Accomplishing this goal is faced with several challenges. Micro-drills suffer from frequent breakage caused from variations in drill process parameters. Micro-drilling tasks afford extremely low feed rates and almost zero tolerance for any feed rate variations. The accompanying robot programming task is made difficult as mathematical models that capture the micro-drilling process complexities and sensitive variations in micro-drill parameters are highly difficult to obtain. Therefore, an experimental approach is …


Can We Make Our Robot Play Soccer? Influence Of Collaborating With Preservice Teachers And Fifth Graders On Undergraduate Engineering Students' Learning During A Robotic Design Process (Work In Progress), Krishnanand Kaipa, Jennifer Kidd, Julia Noginova, Francisco Cima, Stacie Ringleb, Orlando Ayala, Pilar Pazos, Kristie Gutierrez, Min Jung Lee Jan 2022

Can We Make Our Robot Play Soccer? Influence Of Collaborating With Preservice Teachers And Fifth Graders On Undergraduate Engineering Students' Learning During A Robotic Design Process (Work In Progress), Krishnanand Kaipa, Jennifer Kidd, Julia Noginova, Francisco Cima, Stacie Ringleb, Orlando Ayala, Pilar Pazos, Kristie Gutierrez, Min Jung Lee

Mechanical & Aerospace Engineering Faculty Publications

This work-in-progress paper describes engineering students’ experiences in an NSF-funded project that partnered undergraduate engineering students with pre-service teachers to plan and deliver robotics lessons to fifth graders at a local school. This project aims to address an apparent gap between what is taught in academia and industry’s expectations of engineers to integrate perspectives from outside their field to solve modern societal problems requiring a multidisciplinary approach. Working in small teams over Zoom, participating engineering, education, and fifth grade students designed, built, and coded bio-inspired COVID companion robots. The goal for the engineering students was to build new interprofessional skills, …


Virginia Digital Shipbuilding Program (Vdsp): Building An Agile Modern Workforce To Improve Performance In The Shipbuilding And Ship Repair Industry, Joseph Peter Kosteczko, Katherine Smith, Jessica Johnson, Rafael Diaz Jun 2020

Virginia Digital Shipbuilding Program (Vdsp): Building An Agile Modern Workforce To Improve Performance In The Shipbuilding And Ship Repair Industry, Joseph Peter Kosteczko, Katherine Smith, Jessica Johnson, Rafael Diaz

VMASC Publications

Industry 4.0 is the latest stage in the Industrial Revolution and is reflected in the digital transformation and use of emergent technologies including the Internet of Things, Big Data, Robotic automation of processes, 3D printing and additive manufacturing, drones and Artificial Intelligence (AI) in the manufacturing industry. The implementation of these technologies in the Shipbuilding and Ship Repair Industry is currently in a nascent stage. Considering this, there is huge potential to increase cost savings, decrease production timelines, and drive down inefficiencies in Lifecyle management of ships. However, the implementation of these Industry 4.0 technologies is hindered by a noticeable …


Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan Jul 2018

Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system …


Anthropomorphically Inspired Design Of A Tendon-Driven Robotic Prosthesis For Hand Impairments, Manali Bapurao Bhadugale Apr 2018

Anthropomorphically Inspired Design Of A Tendon-Driven Robotic Prosthesis For Hand Impairments, Manali Bapurao Bhadugale

Mechanical & Aerospace Engineering Theses & Dissertations

This thesis presents the design of a robotic prosthesis, which mimics the morphology of a human hand. The primary goal of this work is to develop a systematic methodology that allows a custom-build of the prosthesis to match the specific requirements of a person with hand impairments. Two principal research questions are addressed toward this goal: 1) How do we cater to the large variation in the distribution of overall hand-sizes in the human population? 2) How closely do we mimic the complex morphological aspects of a biological hand in order to maximize the anthropomorphism (human-like appearance) of the robotic …


Development Of A Data Acquisition System For Unmanned Aerial Vehicle (Uav) System Identification, Donald Joseph Lear Oct 2017

Development Of A Data Acquisition System For Unmanned Aerial Vehicle (Uav) System Identification, Donald Joseph Lear

Mechanical & Aerospace Engineering Theses & Dissertations

Aircraft system identification techniques are developed for fixed wing Unmanned Aerial Vehicles (UAV). The use of a designed flight experiment with measured system inputs/outputs can be used to derive aircraft stability derivatives. This project set out to develop a methodology to support an experiment to model pitch damping in the longitudinal short-period mode of a UAV. A Central Composite Response Surface Design was formed using angle of attack and power levels as factors to test for the pitching moment coefficient response induced by a multistep pitching maneuver.

Selecting a high-quality data acquisition platform was critical to the success of the …


Controlling The Error On Target Motion Through Real-Time Mesh Adaptation: Applications To Deep Brain Stimulation, Huu Phuoc Bui, Satyendra Tomar, Hadrien Courtecuisse, M. Audette, Stéphane Cotin, Stéphane P.A. Bordas Jan 2017

Controlling The Error On Target Motion Through Real-Time Mesh Adaptation: Applications To Deep Brain Stimulation, Huu Phuoc Bui, Satyendra Tomar, Hadrien Courtecuisse, M. Audette, Stéphane Cotin, Stéphane P.A. Bordas

Computational Modeling & Simulation Engineering Faculty Publications

We present an error-controlled mesh refinement procedure for needle insertion simulation and apply it to the simulation of electrode implantation for deep brain stimulation, including brain shift.

Our approach enables to control the error in the computation of the displacement and stress fields around the needle tip and needle shaft by suitably refining the mesh, whilst maintaining a coarser mesh in other parts of the domain.

We demonstrate through academic and practical examples that our approach increases the accuracy of the displacement and stress fields around the needle without increasing the computational expense. This enables real-time simulations.

The proposed methodology …


Review Of Development Stages In The Conceptual Design Of An Electro Hydrostatic Actuator For Robotics, Velibor Karanović, Mitar Jocanović, Vukica Jovanović Jan 2014

Review Of Development Stages In The Conceptual Design Of An Electro Hydrostatic Actuator For Robotics, Velibor Karanović, Mitar Jocanović, Vukica Jovanović

Engineering Technology Faculty Publications

The design of modern robotic devices faces numerous requirements and limitations which are related to optimization and robustness. Consequently, these stringent requirements have caused improvements in many engineering areas and lead to development of new optimization methods which better handle new complex products designed for application in industrial robots. One of the newly developed methods used in industrial robotics is the concept of a self-contained power device, an Electro-Hydrostatic Actuator (EHA). EHA devices were designed with a central idea, to avoid the possible drawbacks which were present in other types of actuators that are currently used in robotic systems. This …


Implementing Mechatronics Design Methodology In Mechanical Engineering Technology Senior Design Projects At The Old Dominion University, Vukica M. Jovanovic, Jennifer G. Michaeli, Otilia Popescu, Moustafa R. Moustafa, Mileta Tomovic, Alok K. Verma, Cheng Y. Lin Jan 2014

Implementing Mechatronics Design Methodology In Mechanical Engineering Technology Senior Design Projects At The Old Dominion University, Vukica M. Jovanovic, Jennifer G. Michaeli, Otilia Popescu, Moustafa R. Moustafa, Mileta Tomovic, Alok K. Verma, Cheng Y. Lin

Engineering Technology Faculty Publications

In recent years, the nature of engineering design has changed due to advances in embedded system design and computer technologies. It is rare to engineer a purely mechanical design that does not incorporate electrical and electronic components. Mechanical engineers and mechanical engineering technologists must possess a multi-disciplinary knowledge with the understanding of both mechanical and electrical systems. For this purpose, undergraduate programs in engineering technology have added mechatronics courses to their curriculum. Mechatronics is a design process that is multi-disciplinary in nature and integrates principles of many engineering disciplines including, but not limited to, mechanical engineering, electrical engineering, and controls …


System Design And Integration For Repeated Impact Tests, Cheng Lin, Gene Hou, Sebastian Bawab, Timothy Coats, Hesham Nassar Jan 2009

System Design And Integration For Repeated Impact Tests, Cheng Lin, Gene Hou, Sebastian Bawab, Timothy Coats, Hesham Nassar

Engineering Technology Faculty Publications

The design and integration of an impact-testing machine is particularly for the test of an object which is repeatedly dropped down from a specified height. Four linear actuators with two on each of the two magnetic rails are used to lift up an object weighing up to 70 lbs. Each actuator is powered and controlled by an industrial amplifier. A Programmable Logical Controller (PLC) is applied to activate these four actuators simultaneously and repeatedly. Accelerometers using an National Instruments (NI) data acquisition system are used to measure the impact force during the tests. Students gain design and implementation experiences from …