Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Acoustics, Dynamics, and Controls

Integral equations

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

On A Time Domain Boundary Integral Equation Formulation For Acoustic Scattering By Rigid Bodies In Uniform Mean Flow, Fang Q. Hu, Michelle E. Pizzo, Douglas M. Nark Jan 2017

On A Time Domain Boundary Integral Equation Formulation For Acoustic Scattering By Rigid Bodies In Uniform Mean Flow, Fang Q. Hu, Michelle E. Pizzo, Douglas M. Nark

Mathematics & Statistics Faculty Publications

It has been well-known that under the assumption of a uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation. However, the constant mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the assumed uniform flow. A customary boundary condition for rigid surfaces is that the normal acoustic velocity be zero. In this paper, a careful study of the acoustic energy conservation equation is presented that shows such a boundary condition would in fact lead to source …


The Solution Of Hypersingular Integral Equations With Applications In Acoustics And Fracture Mechanics, Richard S. St. John Jul 1998

The Solution Of Hypersingular Integral Equations With Applications In Acoustics And Fracture Mechanics, Richard S. St. John

Mathematics & Statistics Theses & Dissertations

The numerical solution of two classes of hypersingular integral equations is addressed. Both classes are integral equations of the first kind, and are hypersingular due to a kernel containing a Hadamard singularity. The convergence of a Galerkin method and a collocation method is discussed and computationally efficient algorithms are developed for each class of hypersingular integral equation.

Interest in these classes of hypersingular integral equations is due to their occurrence in many physical applications. In particular, investigations into the scattering of acoustic waves by moving objects and the study of dynamic Griffith crack problems has necessitated a computationally efficient technique …