Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater Jan 1992

Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Several types of solutions exist for multiple target tracking. These techniques are computation-intensive and in some cases very difficult to operate online. The authors report on a backpropagation neural network which has been successfully used to identify multiple moving targets using kinematic data (time, range, range-rate and azimuth angle) from sensors to train the network. Preliminary results from simulated scenarios show that neural networks are capable of learning target identification for three targets during the time period used during training and a time period shortly after. This effective classification period can be extended by the use of networks in coordination …


Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli Jan 1992

Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The design of a robust guidance system for a robot is discussed. The two major tasks for this guidance system are the online recognition of a moving object invariant to rotation and translation, and tracking the moving object using a neural-network-driven vision system. This system included computer software ported to the IBM PC and interfaced with an IBM 7535 robot. The operation of this guidance system involved recognition of a moving object and the ability to track it till the robot and effector was in close proximity of the object. It was found that the robot was able to track …


Hierarchical Neurocontroller Architecture For Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo Jan 1992

Hierarchical Neurocontroller Architecture For Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo

Chemical and Biochemical Engineering Faculty Research & Creative Works

A hierarchical neurocontroller architecture consisting of two artificial neural network systems for the manipulation of a robotic arm is presented. The higher-level network system participates in the delineation of the robot arm workspace and coordinates transformation and the motion decision-making process. The lower-level network provides the correct sequence of control actions. A straightforward example illustrates the architecture''s capabilities, including speed, adaptability, and computational efficiency


Planning And Control Of A Robotic Manipulator Using Neural Networks, Xavier J. R. Avula, Heng Ma, Anil Malkani, Jay-Shinn Tsai, Luis C. Rabelo Jan 1992

Planning And Control Of A Robotic Manipulator Using Neural Networks, Xavier J. R. Avula, Heng Ma, Anil Malkani, Jay-Shinn Tsai, Luis C. Rabelo

Chemical and Biochemical Engineering Faculty Research & Creative Works

An architecture which utilizes two artificial neural systems for planning and control of a robotic arm is presented. The first neural network system participates in the trajectory planning and the motion decision-making process. The second neural network system provides the correct sequence of control actions with a high accuracy due to the utilization of an unsupervised/supervised neural network scheme. The utilization of a hybrid hierarchical/distributed organization, supervised/unsupervised learning models, and forward modeling yielded an architecture with capabilities of high level functionality.