Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10% -25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate …


Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan Jan 2004

Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Adaptive critic (AC) neural network solutions to optimal control designs using dynamic programming has reduced the need of complex computations and storage requirements that typical dynamic programming requires. In this paper, a "single network adaptive critic" (SNAC) is presented. This approach is applicable to a class of nonlinear systems where the optimal control (stationary) equation is explicitly solvable for control in terms of state and costate variables. The SNAC architecture offers three potential advantages; a simpler architecture, significant savings of computational load and reduction in approximation errors. In order to demonstrate these benefits, a real-life micro-electro-mechanical-system (MEMS) problem has been …


A New Method For Suboptimal Control Of A Class Of Nonlinear Systems, Ming Xin, S. N. Balakrishnan Jan 2002

A New Method For Suboptimal Control Of A Class Of Nonlinear Systems, Ming Xin, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, a new nonlinear control synthesis technique (θ - D approximation) is presented. This approach achieves suboptimal solutions to nonlinear optimal control problems in the sense that it solves the Hamilton-Jacobi-Bellman (HJB) equation approximately by adding perturbations to the cost function. By manipulating the perturbation terms both semi-globally asymptotic stability and suboptimality properties can be obtained. The convergence and stability proofs are given. This method overcomes the large control for large initial states problem that occurs in some other Taylor expansion based methods. It does not need time-consuming online computations like the state dependent Riccati equation (SDRE) technique. …


Adaptive Critic Based Neuro-Observer, Xin Liu, S. N. Balakrishnan Jan 2001

Adaptive Critic Based Neuro-Observer, Xin Liu, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A new Neural Network (NN) based observer design method for nonlinear systems represented by nonlinear dynamics and linear/nonlinear measurement is proposed in this paper. In this new approach, as the first step, the observer design problem is changed into a "controller" design problem by establishing the error dynamics, and then the Adaptive Critic (AC) based approach is applied on this error dynamics to design a 'controller', such that the errors are driven to zero. The resulting observer has inherent robustness from the AC based design approach. Some simulations are presented to illustrate the effectiveness of this approach.


Adaptive Critic Based Neural Networks For Control (Low Order System Applications), S. N. Balakrishnan, Victor Biega Jan 1995

Adaptive Critic Based Neural Networks For Control (Low Order System Applications), S. N. Balakrishnan, Victor Biega

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Dynamic programming is an exact method of determining optimal control for a discretized system. Unfortunately, for nonlinear systems the computations necessary with this method become prohibitive. This study investigates the use of adaptive neural networks that utilize dynamic programming methodology to develop near optimal control laws. First, a one dimensional infinite horizon problem is examined. Problems involving cost functions with final state constraints are considered for one dimensional linear and nonlinear systems. A two dimensional linear problem is also investigated. In addition to these examples, an example of the corrective capabilities of critics is shown. Synthesis of the networks in …