Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini Jan 2018

Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini

Masters Theses

"This study investigates the information provided by Light Touch (LT) in improving human postural stability without mechanical assistance. Light Touch, an interaction force with a magnitude about 1 N, is known to improve postural stability in humans during quiet standing. However, the nature of the information from LT that helped improve balance is yet unknown. In this work, we hypothesized that LT provides information about one's body kinematics. We used a haptic robot to provide modulated, measurable light interaction force on the high back haptic location of humans to provide body kinematics-dependent information through LT. Standing balance experiments were performed …


Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar Jan 2018

Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar

Masters Theses

“Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated …


Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler Jan 2018

Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler

Masters Theses

“This thesis presents various approaches for the laser-aided additive manufacturing of glass. First, a technique is investigated to create free-form, low to zero coefficient of thermal expansion structures out of silica-gel. A CO2 laser was coupled through a gantry system and focused onto a binder-free silica-gel powder bed (15-40 μm particles). Prior to writing each layer, powder is dispensed by sifting it onto the build platform as opposed to a conventional wiper system, avoiding contacting and potentially damaging sensitive parts. After deposition, the parts are annealed in a furnace to increase their strength. The influence of various process parameters …


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids …


Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari Jan 2018

Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari

Masters Theses

"The use of microfluidics to transfer fluids without applying any exterior energy source is a promising technology in different fields of science and engineering due to their compactness, simplicity and cost-effective design. In geotechnical engineering, to increase the soil's strength, hydrophilic wicking fibers as type of microfluidics have been employed to transport and drain water out of soil spontaneously by taking advantage of natural capillary force without using any pumps or other auxiliary devices. The objective of this study is to understand the scientific mechanisms of the capability for wicking fiber to drain both gravity and capillary water out of …


Controlling Phase Fractions Of 304l-Ss In Selective Laser Melting Using Cooling Rate, Eberechukwu Anthony Okoro Jan 2018

Controlling Phase Fractions Of 304l-Ss In Selective Laser Melting Using Cooling Rate, Eberechukwu Anthony Okoro

Masters Theses

"This study examines the thermal profile and the ferrite-austenite phase fractions upon heating and cooling of 304- stainless steel powder via Selective Laser Melting (SLM). Experiments were performed to validate the ABAQUS finite element model, while the phase transformation simulation was performed using MatCalc and ThermoCalc. A correlation between the thermo-mechanical changes in ABAQUS and the microstructural changes from MatCalc was obtained by matching their cooling rates. The result indicates that cooling rate has a significant effect on the phase fractions of FCC and BCC formed in 304L stainless steel via the SLM process. The results also indicate that for …


Computational Investigation Of Polymer Electrolyte Membrane Fuel Cell With Nature-Inspired Fibonacci Spiral Flow Field, Suleyman Kose Jan 2018

Computational Investigation Of Polymer Electrolyte Membrane Fuel Cell With Nature-Inspired Fibonacci Spiral Flow Field, Suleyman Kose

Masters Theses

"Polymer electrolyte membrane fuel cells (PEMFC) are promising clean energy devices. The flow field design has crucial role in PEMFC performance for effective distribution of reactants and removal of products. Several nature-inspired flow field designs have recently been proposed in the literature. Common characteristics of these designs were sudden changes in the flow direction through sharp bends and flow field geometries restrained to areas having corners. In this thesis, Fibonacci spiral configuration, which is found in the nature from hurricanes to seashells, was considered for flow field pattern of a PEMFC. Contrary to the bio-inspired designs proposed in previous studies, …


Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai Jan 2018

Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai

Masters Theses

"Quality and efficiency are pivotal indicators of a manufacturing company. Many companies are suffering from shortage of experienced workers across the production line to perform complex assembly tasks such as assembly of an aircraft engine. This could lead to a significant financial loss. In order to further reduce time and error in an assembly, a smart system consisting of multi-modal Augmented Reality (AR) instructions with the support of a deep learning network for tool detection is introduced. The multi-modal smart AR is designed to provide on-site information including various visual renderings with a fine-tuned Region-based Convolutional Neural Network, which is …


Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka Jan 2018

Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka

Masters Theses

"Optical fiber sensors embedded in metals with distributed sensing can sense temperature at multiple points with single fiber. This is useful for smart manufacturing like structural health monitoring in aerospace industry and smart molds in manufacturing plants. There is a huge difference in thermal coefficient of expansion for fiber and metal. This is the reason for the increase in sensitivity for embedded fiber sensors. However, at high temperatures, the stress on the fiber increases, eventually damaging the sensor. The fiber-metal interface determines the sensor performance. A tight interface results in high sensitivity and a gap in the interface enhances sensing …


Enhancement Of Performance Of Micro Direct Ethanol Fuel Cells By Structural Modification, Sindhuja Valluri Jan 2018

Enhancement Of Performance Of Micro Direct Ethanol Fuel Cells By Structural Modification, Sindhuja Valluri

Masters Theses

“Direct Ethanol Fuel Cells (DEFC’s) are becoming more important in current energy conversion devices because of their higher efficiency compared to other fuel cells. However, the performance of current DEFC’s is not efficient in providing energy to meet increasing energy demand. The objective of this work is to make the cell compact and at the same time improve performance. For this purpose, we have removed gasket and endplates to make structure compact and increased surface area by developing a new corrugated structure. This work also uses 3D printing technology Fused Deposition Modeling (FDM) to make pocket backing case to improve …