Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including ...


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met ...


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing ...


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Jul 2017

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Department of Materials Science and Engineering Publications

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer ...


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Jun 2017

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing ...


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat ...


Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra Jan 2017

Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra

Dissertations, Master's Theses and Master's Reports

This thesis attempts to show how an open source 3-D printer platform, the self replicating rapid prototype (RepRap), could be used to accelerate the development of research and manufacturing tools. Two projects are shown as examples, both utilizing components of the 3-D printer platform.

The first project is to develop an instrument capable of performing automated large-area four-point probe measurements. A modified RepRap 3-D Printer with a four-point probe in place of the 3-D printer head is utilized as a precision positioning platform. The printer together with custom designed measurement circuit and software performs automated measurement on multiple points on ...


Mechanical Testing Of Fused Filament 3-D Printed Components For Distributed Manufacturing, Nagendra Gautam Tanikella Jan 2016

Mechanical Testing Of Fused Filament 3-D Printed Components For Distributed Manufacturing, Nagendra Gautam Tanikella

Dissertations, Master's Theses and Master's Reports

Fused filament fabrication (FFF)-based open-source 3-D printers offer the potential of decentralized manufacturing both in developing and developed countries. Unfortunately, a severe lack of data and standards relating to material properties and printed components limit this potential. This thesis first investigates the mechanical properties of a wide-range of FFF materials and provides a database of mechanical strength of the materials tested. The results demonstrate that the tensile strength of a 3-D printed specimen depends largely on the mass of the specimen, which provides a means to estimate the strength of 3-D printed components. Then this information is used to ...