Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable ...


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed ...


Networked Microgrid Optimization And Energy Management, Robert S. Jane Jan 2019

Networked Microgrid Optimization And Energy Management, Robert S. Jane

Dissertations, Master's Theses and Master's Reports

Military vehicles possess attributes consistent with a microgrid, containing electrical energy generation, storage, government furnished equipment (GFE), and the ability to share these capabilities via interconnection. Many military vehicles have significant energy storage capacity to satisfy silent watch requirements, making them particularly well-suited to share their energy storage capabilities with stationary microgrids for more efficient energy management. Further, the energy generation capacity and the fuel consumption rate of the vehicles are comparable to standard diesel generators, for certain scenarios, the use of the vehicles could result in more efficient operation. Energy management of a microgrid is an open area of ...


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary ...


Model-Based Control Of An Rcci Engine, Akshat Abhay Raut Jan 2017

Model-Based Control Of An Rcci Engine, Akshat Abhay Raut

Dissertations, Master's Theses and Master's Reports

Reactivity controlled compression ignition (RCCI) is a combustion strategy that offers high fuel conversion efficiency and near zero emissions of NOx and soot which can help in improving fuel economy in mobile and stationary internal combustion engine (ICE) applications and at the same time lower engine-out emissions. One of the main challenges associated with RCCI combustion is the difficulty in simultaneously controlling combustion phasing, engine load, and cyclic variability during transient engine operations.

This thesis focuses on developing model based controllers for cycle-to-cycle combustion phasing and load control during transient operations. A control oriented model (COM) is developed by using ...


Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines ...


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane ...


Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara Jan 2016

Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara

Dissertations, Master's Theses and Master's Reports

Building and transportation sectors account for 41% and 27% of total energy consumption in the US, respectively. Designing smart controllers for Heating, Ventilation and Air-Conditioning (HVAC) systems and Internal Combustion Engines (ICEs) can play a key role in reducing energy consumption. Exergy or availability is based on the First and Second Laws of Thermodynamics and is a more precise metric to evaluate energy systems including HVAC and ICE systems. This dissertation centers on development of exergy models and design of model-based controllers based on exergy and energy metrics for grid-connected energy systems including HVAC and ICEs.

In this PhD dissertation ...


Development And Operation Of A Mobile Test Facility For Education, Christopher Davis Jan 2015

Development And Operation Of A Mobile Test Facility For Education, Christopher Davis

Dissertations, Master's Theses and Master's Reports

The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even ...