Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Cleveland State University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 271

Full-Text Articles in Mechanical Engineering

Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter Feb 2019

Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter

Mechanical Engineering Faculty Publications

Actuators intended for human–machine interaction systems are usually designed to be mechanically compliant. Conventional actuators are not suitable for this purpose due to typically high stiffness. Advanced powered prosthetic and orthotic devices can vary their stiffness during a motion cycle and are power-efficient. This paper proposes a novel actuator design that modulates stiffness by means of a flexible beam. A motorized drive system varies the active length of the cantilever beam, thus achieving stiffness modulation. New large deflection formulation for cantilever beams with rolling contact constraints is used to determine the moment produced by the actuator. To validate the ...


Advanced Processing Of Nickel-Titanium-Graphite Based Metal Matrix Composites, Amit K. Patil Jan 2019

Advanced Processing Of Nickel-Titanium-Graphite Based Metal Matrix Composites, Amit K. Patil

ETD Archive

A new class of in situ titanium carbide (TiC)/graphite (C) reinforced nickel matrix composites with variation in composition particularly varying C/Ti ratio have been processed using two different processing techniques. Firstly, via mechanical alloying (MA) followed by spark plasma sintering (SPS), i.e. solid-state processing. Secondly, using Laser engineered net shaping (LENSTM) technique, i.e. metal additive manufacturing technique. Mechanical alloying has gained special attention as a powerful non-equilibrium process for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering is a unique technique for processing dense and near net shape bulk alloys with homogeneous microstructure. Laser engineered ...


Robust Impedance Control Of A Four Degree Of Freedom Exercise Robot, Santino Joseph Bianco Jan 2019

Robust Impedance Control Of A Four Degree Of Freedom Exercise Robot, Santino Joseph Bianco

ETD Archive

The CSU 4OptimX exercise robot provides a platform for future research into advanced exercise and rehabilitation. The robot and its control system will autonomously modify reference trajectories and impedances on the basis of an optimization criterion and physiological feedback. To achieve this goal, a robust impedance control system with trajectory tracking must be implemented as the foundational control scheme. Two control laws will be compared, sliding mode and H-infinity control. The above robust control laws are combined with underlying impedance control laws to overcome uncertain plant model parameters and disturbance anomalies affecting the input signal. The sliding mode control law ...


A Reticulation Of Skin-Applied Strain Sensors For Motion Capture, Christopher A. Schroeck Jan 2019

A Reticulation Of Skin-Applied Strain Sensors For Motion Capture, Christopher A. Schroeck

ETD Archive

The purpose of this research is to develop a system of motion capture based on skin-applied strain sensors. These elastic sensors are of interest because they can be applied to the body without restricting motion and are well suited to operate in more practical environments, such as sports fields, gymnasiums, and outdoor areas. This combination is currently not available in the field of motion capture. The current issues with strain sensor motion capture technology is the accurate is not sufficient for motion analysis and axial rotation monitoring of joints is not available. This project will build and test a sensor ...


Design, Control, And Optimization Of Robots With Advanced Energy Regenerative Drive Systems, Poya Khalaf Jan 2019

Design, Control, And Optimization Of Robots With Advanced Energy Regenerative Drive Systems, Poya Khalaf

ETD Archive

We investigate the control and optimization of robots with ultracapacitor based regenerative drive systems. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use ultracapacitors for energy storage. An electrical interconnection known as the star configuration is considered for the regenerative drives that allows for direct electric energy redistribution among joints, and enables higher energy utilization efficiencies. A semi-active virtual control strategy is used to achieve control objectives. We find closed-form expressions for the optimal robot and actuator parameters (link lengths, gear ratios ...


Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan Sep 2018

Capturing The Competing Influence Of Thermal And Mechanical Loads On The Strain Of Turbine Blade Coatings Via High Energy X-Rays, Albert Manero, Kevin Knipe, Janine Wischek, Carla Meid, John Okasinski, Jonathan Almer, Anette M. Karlsson, Marion Bartsch, Seetha Raghavan

Mechanical Engineering Faculty Publications

This paper presents findings of synchrotron diffraction measurements on tubular specimens with a thermal barrier coating (TBC) system applied by electron beam physical vapor deposition (EB-PVD), having a thermally grown oxide (TGO) layer due to aging in hot air. The diffraction measurements were in situ while applying a thermal cycle with high temperature holds at 1000 °C and varying internal air cooling mass flow and mechanical load. It was observed that, during high temperature holds at 1000 °C, the TGO strain approached zero if no mechanical load or internal cooling was applied. When applying a mechanical load, the TGO in-plane ...


Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert Jun 2018

Compensation For Inertial And Gravity Effects In A Moving Force Platform, Sandra K. Hnat, Ben J.H. Van Basten, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Force plates for human movement analysis provide accurate measurements when mounted rigidly on an inertial reference frame. Large measurement errors occur, however, when the force plate is accelerated, or tilted relative to gravity. This prohibits the use of force plates in human perturbation studies with controlled surface movements, or in conditions where the foundation is moving or not sufficiently rigid. Here we present a linear model to predict the inertial and gravitational artifacts using accelerometer signals. The model is first calibrated with data collected from random movements of the unloaded system and then used to compensate for the errors in ...


Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon Apr 2018

Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon

Mechanical Engineering Faculty Publications

We design an optimal passivitybased tracking/impedance control system for a robotic manipulator with energy regenerative electronics, where the manipulator has both actively and semi-actively controlled joints. The semi-active joints are driven by a regenerative actuator that includes an energy-storing element. Method: External forces can have a large influence on energy regeneration characteristics. Impedance control is used to impose a desired relationship between external forces and deviation from reference trajectories. Multi-objective optimization (MOO) is used to obtain optimal impedance parameters and control gains to compromise between the two conflicting objectives of trajectory tracking and energy regeneration. We solve the MOO ...


Opty: Software For Trajectory Optimization And Parameter Identification Using Direct Collocation, Jason K. Moore, Antonie J. Van Den Bogert Jan 2018

Opty: Software For Trajectory Optimization And Parameter Identification Using Direct Collocation, Jason K. Moore, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

opty is a tool for describing and solving trajectory optimization and parameter identification problems based on symbolic descriptions of ordinary differential equations and differential algebraic equations that describe a dynamical system. The motivation for its development resides in the need to solve optimal control problems of biomechanical systems. The target audience is engineers and scientists interested in solving nonlinear optimal control and parameter identification problems with minimal computational overhead.


Bidirectionally Stretched Flow Of Jeffrey Liquid With Nanoparticles, Rosseland Radiation And Variable Thermal Conductivity, M. Archana, B. J. Gireesha, M. M. Rashidi, B. C. Prasannakumara, Rama S.R. Gorla Jan 2018

Bidirectionally Stretched Flow Of Jeffrey Liquid With Nanoparticles, Rosseland Radiation And Variable Thermal Conductivity, M. Archana, B. J. Gireesha, M. M. Rashidi, B. C. Prasannakumara, Rama S.R. Gorla

Mechanical Engineering Faculty Publications

Heat and mass transfer stretched flow of an incompressible, electrically conducting Jeffrey fluid has been studied numerically. Nanoparticles are suspended in the base fluid and it has many applications such as cooling of engines, thermal absorption systems, lubricants fuel cell, nanodrug delivery system and so on. Temperature dependent variable thermal conductivity with Rosseland approximation is taken into account and suction effect is employed in the boundary conditions. The governing partial differential equations are first transformed into set of ordinary differential equations using selected similarity transformations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method along with shooting technique. The ...


Human Activity Tracking And Recognition Using Kinect Sensor, Roanna Lun Jan 2018

Human Activity Tracking And Recognition Using Kinect Sensor, Roanna Lun

ETD Archive

The objective of this dissertation research is to use Kinect sensor, a motion sensing input device, to develop an integrated software system that can be used for tracking non-compliant activity postures of consented health-care workers for assisting the workers' compliance to best practices, allowing individualized gestures for privacy-aware user registration, movement recognition using rule-based algorithm, real-time feedback, and exercises data collection. The research work also includes developing a graphical user interface and data visualization program for illustrating statistical information for administrator, as well as utilizing cloud based database system used for data resource.


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys ...


Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban Jan 2018

Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban

ETD Archive

Currently there is a large interest in the use of more efficient means of propulsion in long term missions due to the costs and difficulties associated with placing and maintaining the needed fuel for conventional chemical systems in orbit. Mass reduction of upper stages will return large returns due to the great reduction in required lower stage fuel. Due to these factors, alternatives are undergoing active research, though this paper is concerned with the area of electrical propulsion. Electric propulsion is broadly defined as propulsion where the energization of the exhaust occurs via application of electromagnetic fields as opposed to ...


Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat Jan 2018

Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat

ETD Archive

Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the ...


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced ...


An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher Jan 2018

An Anisotropic Constitutive Model For Nuclear Grade Graphite, James Christopher

ETD Archive

Graphite material is used extensively in nuclear reactors however the material has a limited strain range for elastic behavior. This provides the motivation to derive a constitutive model that captures the inelastic deformations exhibited by this material. This dissertation first presents details of an isotropic constitutive model derived using continuum principles of engineering mechanics that accounts for different inelastic behavior in tension and compression. An inelastic dissipation function was developed using an integrity basis proposed by Green and Mkrtichian (1977) for the isotropic version of the model. This isotropic model was then extended to capture anisotropic stress-strain behavior using directional ...


Optimal Design And Control Of An Electromechanical Transfemoral Prosthesis With Energy Regeneration, Farbod Rohani, Hanz Richter, Antonie J. Van Den Bogert Nov 2017

Optimal Design And Control Of An Electromechanical Transfemoral Prosthesis With Energy Regeneration, Farbod Rohani, Hanz Richter, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved ...


Investigation Of Extremum Seeking Control For Adaptive Exercise Machines, Brahm T. Powell Jan 2017

Investigation Of Extremum Seeking Control For Adaptive Exercise Machines, Brahm T. Powell

ETD Archive

Many muscle rehabilitation regimens are non-adaptive and recommended subjectively by physicians. While there are advantages to having the feedback of a qualified physician, utilizing real-time muscle performance feedback could be beneficial. An extremum seeking control design is proposed to fulfill the need for an automated, load-varying exercise machine that can optimize muscle performance.

Several steps are outlined to contribute to the realization of this goal. First, the extremum seeking control scheme is discussed. Second, the Hill muscle model will be described. Theoretical muscle effort extrema will be derived for selected optimization cases, namely maximizing average squared power by varying load ...


Forming A Metal Matrix Nanocomposite (Mmnc) With Fully Dispersed And Deagglomerated Multiwalled Carbon Nanotubes (Mwcnts), Mahesh Kumar Pallikonda Jan 2017

Forming A Metal Matrix Nanocomposite (Mmnc) With Fully Dispersed And Deagglomerated Multiwalled Carbon Nanotubes (Mwcnts), Mahesh Kumar Pallikonda

ETD Archive

Carbon Nanotubes (CNTs) with their exceptional properties will facilitate the Metal matrix composites (MMC) to exhibit good mechanical properties, thermal and electrical conductivities, corrosion resistance, etc. The critical factor that holds the development of the Metal matrix Nanocomposites (MMNC) by using CNTs is the tendency of CNTs to form clusters (agglomerations) due to their high Van der Waals attractions. Due to this factor, low density and other properties of the CNTs, there has been a delay in harnessing their ultimate potential.
Existing literature in contemporary times from the works of few researches in Nanocomposites shows the prevalence of using surfactants ...


Design And Control Of A Powered Rowing Machine With Programmable Impedance, Jose Humberto De La Casas Zolezzi Jan 2017

Design And Control Of A Powered Rowing Machine With Programmable Impedance, Jose Humberto De La Casas Zolezzi

ETD Archive

Due to the rise of obesity, diabetes and cardiovascular disease, research in human performance and physical activity has received increased attention. Rowing machines are used for performance improvements through concentric exercises, however a combination of concentric and eccentric actions is known to improve the effectiveness of training. In this work, a conventional rowing machine was modified to include an electric motor and a robust impedance control system, enabling programmable impedance with concentric and eccentric capabilities. Eccentric exercises are known to contribute significantly to the efficacy of training and to diminish the detrimental effects of humans operating in microgravity for long ...


Piv Analysis Of Wake Structure Of Real Elephant Seal Whiskers, Joseph Antun Bunjevac Jan 2017

Piv Analysis Of Wake Structure Of Real Elephant Seal Whiskers, Joseph Antun Bunjevac

ETD Archive

Seals are able to accurately detect minute disturbances in the ambient flow
environment using their whiskers, which is attributed to the exceptional capability of
their whiskers to suppress vortex-induced vibrations in the wake. To explore potential applications for designing smart flow devices, such as high-sensitivity underwater
flow sensors and drag reduction components, researchers have studied how the role
of some key parameters of whisker-like morphology affect the wake structure. Due to
the naturally presented variation in size and curvature along the length of whiskers,
it is not well understood how a real whisker changes the surrounding flow and the
vortex ...


Human-Like Rewards To Train A Reinforcement Learning Controller For Planar Arm Movement, Kathleen M. Jagodnik, Philip S. Thomas, Antonie J. Van Den Bogert, Michael S. Branicky, Robert F. Kirsch Oct 2016

Human-Like Rewards To Train A Reinforcement Learning Controller For Planar Arm Movement, Kathleen M. Jagodnik, Philip S. Thomas, Antonie J. Van Den Bogert, Michael S. Branicky, Robert F. Kirsch

Mechanical Engineering Faculty Publications

High-level spinal cord injury (SCI) in humans causes paralysis below the neck. Functional electrical stimulation (FES) technology applies electrical current to nerves and muscles to restore movement, and controllers for upper extremity FES neuroprostheses calculate stimulation patterns to produce desired arm movement. However, currently available FES controllers have yet to restore natural movements. Reinforcement learning (RL) is a reward-driven control technique; it can employ user-generated rewards, and human preferences can be used in training. To test this concept with FES, we conducted simulation experiments using computer-generated ``pseudohuman{''} rewards. Rewards with varying properties were used with an actor-critic RL controller for ...


Walking Simulator Mechanism, Titus Lungu, Igor Tachynskyy, Omri Tayyara May 2016

Walking Simulator Mechanism, Titus Lungu, Igor Tachynskyy, Omri Tayyara

The Downtown Review

This paper presents the design, simulation, and kinematic evaluation of a mechanism aimed at simulating both the motion and ground reaction forces produced by a human foot while walking. Such a mechanism can be used to test the durability of shoes through life cycle analysis. In attempting to mimic the physical motion of the human foot as closely as possible, the forces experienced by the human foot were also accurately replicated through the incorporation of a non-stationary testing platform. As is shown in the paper, this testing environment allows for simple adjustments to be made in order to simulate different ...


A Simulation And Experimental Study Of Active Disturbance Rejection For Industrial Pressure Control, Xiaoxu Li Jan 2016

A Simulation And Experimental Study Of Active Disturbance Rejection For Industrial Pressure Control, Xiaoxu Li

ETD Archive

The quality of control loop is very important in hydraulic machineries, where pressure must be accurately regulated in the presence of various disturbances. Proportional-Integral-Derivative (PID) control has dominated the industry for a long time and it is by far the most popular general purpose controller for pressure control. The purpose of this study is to conduct a simulation and experimental study comparing PID with an emerging new technology, namely active disturbance rejection control (ADRC). For the purpose of this study, an experimental testbed similar to those used in industry settings is used; its mathematic model is derived and used in ...


Experimental Investigation Of Turbulent Flow Induced By New-Generation Wind Fences With Multi-Scale Fractal Structure, Sarah M. Mcclure Jan 2016

Experimental Investigation Of Turbulent Flow Induced By New-Generation Wind Fences With Multi-Scale Fractal Structure, Sarah M. Mcclure

ETD Archive

Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale ...


Characterization Of Performance Of A 3d Printed Stirling Engine Through Analysis And Test, Julie Vodhanel Jan 2016

Characterization Of Performance Of A 3d Printed Stirling Engine Through Analysis And Test, Julie Vodhanel

ETD Archive

This thesis involves the fusion of two technologies, Stirling engines and additive
manufacturing. The project began by building a Stirling engine primarily out of 3D printed parts. Methods to measure the power output were designed and built with a combination of 3D printed and off the shelf parts. The Stirling engine was tested to see if there was a correlation to analysis results, and a regenerator was installed to determine the effect on performance for this relatively low temperature engine. Finally, variations in test operation and the use of heat sinks were used to find a combination that will allow ...


An Elaborate Data Set On Human Gait And The Effect Of Mechanical Perturbations, Jason K. Moore, Sandra K. Hnat, Antonie J. Van Den Bogert Apr 2015

An Elaborate Data Set On Human Gait And The Effect Of Mechanical Perturbations, Jason K. Moore, Sandra K. Hnat, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an instrumented treadmill. Each trial consists of 120 s of normal walking and 480 s of walking while being longitudinally perturbed during each stance phase with pseudo-random fluctuations in the speed of the treadmill belt. A total of approximately 1.5 h of normal walking (>5000 gait cycles) and 6 h of perturbed walking (>20,000 gait cycles) is included in the data set. We provide full body marker trajectories and ground reaction loads in addition to a presentation of processed data that ...


Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu Jan 2015

Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu

ETD Archive

A newly developed production test stand for measuring the spray angle of a pressure swirl atomizer was constructed and used to measure a product line of these pressure swirl atomizers -- the macrospray atomizer. This new test stand, utilizing constant temperature hot wire anemometers, captures the spray angle data based on the voltage drop the hot wire probes see as they traverse the spray cone of the atomizer and as fluid droplets impinge upon the wire. Datasets acquired from the experiments are compared and correlated with computational fluid dynamics (CFD) simulation data. In addition, angles obtained from another type of spray ...


Dynamic Model Of A Non-Linear Pneumatic Pressure Modulating Valve Using Bond Graphs, Christopher L. Brubaker Jan 2015

Dynamic Model Of A Non-Linear Pneumatic Pressure Modulating Valve Using Bond Graphs, Christopher L. Brubaker

ETD Archive

This research develops a mathematical model of the dynamic pressure response to a variable travel input of a pneumatic pressure modulating valve intended for use in a vehicle air brake system. Generically, the valve is a multi-domain system consisting of a mechanical portion and a pneumatic portion. Included in the mechanical portion of the model are compliance of the springs, inertia of the components, and resistance of the sliding components. The pneumatic portion of the model includes capacitance due to the compressibility of the gas, flow resistance through connected plumbing, and flow resistance through the valve control orifices. The development ...


Optimal Design And Control Of A Lower-Limb Prosthesis With Energy Regeneration, Holly E. Warner Jan 2015

Optimal Design And Control Of A Lower-Limb Prosthesis With Energy Regeneration, Holly E. Warner

ETD Archive

The majority of amputations are of the lower limbs. This correlates to a particular need for lower-limb prostheses. Many common prosthesis designs are passive in nature, making them inefficient compared to the natural body. Recently as technology has progressed, interest in powered prostheses has expanded, seeking improved kinematics and kinetics for amputees. The current state of this art is described in this thesis, noting that most powered prosthesis designs do not consider integrating the knee and the ankle or energy exchange between these two joints. An energy regenerative, motorized prosthesis is proposed here to address this gap. After preliminary data ...