Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Computational Study On Suppression Of Airfoil Flow Separation Using High-Frequency Translational Surface Actuation, Bibek Gupta Apr 2021

Computational Study On Suppression Of Airfoil Flow Separation Using High-Frequency Translational Surface Actuation, Bibek Gupta

Honors Theses

Flow separation is a phenomenon that occurs when pressure increases in the streamwise direction of a flow, making a distinctive boundary layer or separation bubble. It causes aircraft to experience an increase in drag and noise and a decrease in a lift, hence degrading their aviation performance. This study uses numerical simulations to understand better the effects of high-frequency translational surface actuation (HFTSA) on flow separation control. The numerical simulations mimic the experimental parameters of an experiment performed by Okoye et al. on using the HFTSA system to control flow separation. A symmetrical airfoil structure of chord length of 0.3 …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Impact Of Magnetocaloric Material Properties On Performance Of A Magnetocaloric Heat Pump., Michael G. Schroeder May 2020

Impact Of Magnetocaloric Material Properties On Performance Of A Magnetocaloric Heat Pump., Michael G. Schroeder

Electronic Theses and Dissertations

In the field of magnetocaloric heat pumps much research has been performed around machine design and theoretical machines, but little has been researched around practical problems such as variability in material properties. The present work defines a simulation tool that has been proven with experimental data. Magnetocaloric material cascades were statistically analyzed and parameterized, such that they could be recreated parametrically using a split Lorentz function with normally distributed parameters. Correlated curve-defining values with standard deviations were used as input into the simulation tool to determine the effect of variation on cooling heat pump performance for a household refrigerator application. …


Kinesthetic Learning Experience Simulation Using An Online Intervention To Improve Hands-On Ability, David Leach Jan 2018

Kinesthetic Learning Experience Simulation Using An Online Intervention To Improve Hands-On Ability, David Leach

Dissertations, Master's Theses and Master's Reports

Students enrolled in mechanical and manufacturing engineering programs employ differing levels of mechanical aptitude and practical hands-on ability. Many students lack practical experience tinkering with mechanical devices and mechanisms prior to entering their post-secondary years. Student attention spans in traditional classroom environments appear to be decreasing with the ever-increasing addiction to immediate gratification provided by electronic devices, gaming software, and social media platforms. The question is then raised whether or not modern engineering students have the ability to improve mechanical aptitude by simulating a kinesthetic or tactile learning experience through an online tutorial. This project describes the development and testing …


Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader Oct 2017

Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader

Masters Theses

Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from “higher up” where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get “stale” air. …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell Apr 2017

Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell

Mechanical Engineering ETDs

In the study, a drilling fluid with known properties is analyzed and simulated in the laminar regime through a pipe with dimensions of 1.5m in length and 0.02m in diameter. The purpose of the conducted analysis is to demonstrate the advantages of the Herschel-Bulkley model currently used in the oil and gas industry for analyzing non-Newtonian drilling fluids.

For comparison, the analysis is also performed using more simple models for non-Newtonian fluids such as the Bingham Plastic model and the Power Law model and for a Newtonian fluid (water). In addition to analytical models, computations are conducted using …


Advancement And Validation Of A Plug-In Hybrid Electric Vehicle Model Utilizing Experimental Data From Vehicle Testing, Kevin Lloyd Snyder Jan 2015

Advancement And Validation Of A Plug-In Hybrid Electric Vehicle Model Utilizing Experimental Data From Vehicle Testing, Kevin Lloyd Snyder

Wayne State University Theses

The objective of the research into modeling and simulation was to provide an iterative improvement to the Wayne State EcoCAR 2 team's math-based design tools for use in evaluating different outcomes based on hybrid powertrain architecture tweaks, controls code development and testing. This thesis includes the results of the team's work in the EcoCAR 2 competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.

Plant model validations and advancements brought the vehicle plant model directionally closer to the actual vehicle's experimental data …


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …