Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Energy efficiency

Chemical Engineering

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Hybrid Metal Oxide Cycle Water Splitting, Richard B. Diver Jr., Robert D. Palumbo, Nathan P. Siegel, James E. Miller Jan 2017

Hybrid Metal Oxide Cycle Water Splitting, Richard B. Diver Jr., Robert D. Palumbo, Nathan P. Siegel, James E. Miller

Other Faculty Research and Publications

Hybrid thermochemical water splitting systems are disclosed that thermally reduces metal oxides particles to displace some but not all of the electrical requirements in a water splitting electrolytic cell. In these hybrid systems, the thermal reduction temperature is significantly reduced compared to two-step metal-oxide thermochemical cycles in which only thermal energy is required to produce hydrogen from water. Also, unlike conventional higher temperature systems where the reduction step must be carried out under reduced oxygen pressure, the reduction step in the proposed hybrid systems can be carried out in air, allowing for thermal input by a solar power tower with …


Hybrid Metal Oxide Cycle Water Splitting, Richard B. Diver Jr, Robert D. Palumbo, Nathan P. Siegel, James E. Miller Jan 2016

Hybrid Metal Oxide Cycle Water Splitting, Richard B. Diver Jr, Robert D. Palumbo, Nathan P. Siegel, James E. Miller

Other Faculty Research and Publications

Hybrid thermochemical water splitting cycles are provided in which thermally reduced metal oxides particles are used to displace some but not all of the electrical requirements in a water splitting electrolytic cell. In these hybrid cycles, the thermal reduction temperature is significantly reduced compared to two-step metal-oxide thermochemical cycles in which only thermal energy is required to produce hydrogen from water. Also, unlike the conventional higher temperature cycles where the reduction step must be carried out under reduced oxygen pressure, the reduction step in the proposed hybrid cycles can be carried out in air, allowing for thermal input by a …