Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Optimization

Discipline
Institution
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

Indonesia’S Municipal Solid Waste 3r And Waste To Energy Programs, Farizal Farizal, Radityo Aji, Amar Rachman, Nasruddin Nasruddin, Teuku Meurah Indra Mahlia Dec 2017

Indonesia’S Municipal Solid Waste 3r And Waste To Energy Programs, Farizal Farizal, Radityo Aji, Amar Rachman, Nasruddin Nasruddin, Teuku Meurah Indra Mahlia

Makara Journal of Technology

Like most cities in the world, population in Indonesia continues to grow every year. Problems that can arise from this are the increasing amount of municipal solid waste (MSW) production and the growing demand for electricity. To deal with the problems, Indonesian government runs 3R (Reduce, Reuse and Recycle) and WTE (Waste to Energy) Programs simultaneously. 3R program aims to reduce the number of waste, while WTE program aims to generate electricity as an alternative energy source. This study aims to find out the optimal proportion of MSW treated through the 3R and WTE programs. For the purpose, a goal …


Design And Analysis Of Compressed Air Power Harvesting Systems, Zachary James Sadler Dec 2017

Design And Analysis Of Compressed Air Power Harvesting Systems, Zachary James Sadler

Theses and Dissertations

Procedure for site discovery, system design, and optimization of power harvesting systems is developed with an emphasis on application to air compressors. Limitations for the usage of infrared pyrometers is evaluated. A system of governing equations for thermoelectric generators is developed. A solution method for solving the system of equations is created in order to predict power output from the device. Payback analysis is proposed for determining economic viability. A genetic algorithm is used to optimize the power harvesting system payback with changing quantities and varieties of thermoelectric generators, as well as the back work put into cooling the thermoelectric …


Design And Analysis Of Compressed Air Power Harvesting Systems, Zachary James Sadler Dec 2017

Design And Analysis Of Compressed Air Power Harvesting Systems, Zachary James Sadler

Theses and Dissertations

Procedure for site discovery, system design, and optimization of power harvesting systems is developed with an emphasis on application to air compressors. Limitations for the usage of infrared pyrometers is evaluated. A system of governing equations for thermoelectric generators is developed. A solution method for solving the system of equations is created in order to predict power output from the device. Payback analysis is proposed for determining economic viability. A genetic algorithm is used to optimize the power harvesting system payback with changing quantities and varieties of thermoelectric generators, as well as the back work put into cooling the thermoelectric …


Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and argon. This …


Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris Aug 2017

Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris

UNLV Theses, Dissertations, Professional Papers, and Capstones

It has been demonstrated that although many varieties of upper limb prosthetics exist, commercially available prosthetics are outdated and unsatisfactory. Ineffectiveness and limitations have led to some prosthesis wearers having to own multiple devices, whereas others have given up on them entirely. Even though ample research has been conducted to design and test new hand designs, the industry appears to rest in an overall stagnated state.

It was proposed here, that one problem with prosthetic research is an excess of variables involved in testing, and therefore the improper application of the scientific method. It seems that each time a research …


Improving The Floris Wind Plant Model For Compatibility With Gradient-Based Optimization, Jared Thomas, Pieter Gebraad, Andrew Ning Aug 2017

Improving The Floris Wind Plant Model For Compatibility With Gradient-Based Optimization, Jared Thomas, Pieter Gebraad, Andrew Ning

Faculty Publications

The FLOw Redirection and Induction in Steady-state (FLORIS) model, a parametric wind turbine wake model that predicts steady state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This paper provides details on the recent changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using …


Radiative Heat Transfer Analysis Of Railroad Bearings For Wayside Hot-Box Detector Optimization, Arthur Mealer, Constantine Tarawneh, Stephen Crown Jul 2017

Radiative Heat Transfer Analysis Of Railroad Bearings For Wayside Hot-Box Detector Optimization, Arthur Mealer, Constantine Tarawneh, Stephen Crown

Mechanical Engineering Faculty Publications and Presentations

The railroad industry utilizes wayside detection systems to monitor the temperature of freight railcar bearings in service. The wayside hot-box detector (HBD) is a device that sits on the side of the tracks and uses a non-contact infrared sensor to determine the temperature of the train bearings as they roll over the detector. Various factors can affect the temperature measurements of these wayside detection systems. The class of the railroad bearing and its position on the axle relative to the position of the wayside detector can affect the temperature measurement. That is, the location on the bearing cup where the …


An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye Jul 2017

An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye

Mechanical Engineering Faculty Publications

Operating room (OR) scheduling is important. Because of increasing demand for surgical services, hospitals must provide high quality care more efficiently with limited resources. When constructing the OR schedule, it is necessary to consider the availability of downstream resources, such as intensive care unit (ICU) and post anaesthesia care unit (PACU). The unavailability of downstream resources causes blockings between every two consecutive stages. In this paper we address the master surgical schedule (MSS) problem in order to minimize blockings between two consecutive stages. First, we present a blocking minimization (BM) model for the MSS by using integer programming, based on …


Fast Estimation Model Of Pressure-Temperature Response For Planning Focused Ultrasound Surgery, Tariq Mohammad Arif Jul 2017

Fast Estimation Model Of Pressure-Temperature Response For Planning Focused Ultrasound Surgery, Tariq Mohammad Arif

Dissertations

High Intensity Focused Ultrasound (HIFU) is becoming a widely accepted modality for extracorporeal non-invasive hyperthermia and surgical procedures. Since ultrasonic transducers need to operate in various challenging body locations, the arrangement of their array elements can be optimized to improve the capability of controlling focus intensity. In the first part of this dissertation, patterns of pressure field variations with several selected design variables (kerf, transducer element’s number and element’s width-height) are studied. These patterns indicate that there is a more suitable shape and arrangement of transducer elements in a specified area to achieve highest possible pressure. In order to obtain …


A Parametric Investigation And Optimization Of A Cylindrical Explosive Charge, Logan Ellsworth Beaver Jul 2017

A Parametric Investigation And Optimization Of A Cylindrical Explosive Charge, Logan Ellsworth Beaver

Master's Theses (2009 -)

Explosive device design has a wide impact in the space, manufacturing, military, and mining industries. As a step toward computer assisted design of explosives, an optimization framework was developed using the Design Analysis Kit for Optimization and Terrascale Applications (Dakota). This software was coupled with the hydrocode CTH. This framework was applied to three exploding cylinder models, two in 1D and one in 2D. Gradient descent, dividing rectangles, and a genetic algorithm were each applied to the one-dimensional models. Parametric studies were performed as a basis for comparison with the optimization algorithms, as well as qualifying the 1D model's accuracy. …


Optimization Under Uncertainty For Wake Steering Strategies, Julian Quick, Jennifer Annoni, Ryan King, Katherine Dykes, Paul Fleming, Andrew Ning May 2017

Optimization Under Uncertainty For Wake Steering Strategies, Julian Quick, Jennifer Annoni, Ryan King, Katherine Dykes, Paul Fleming, Andrew Ning

Faculty Publications

Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence …


Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane Apr 2017

Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane

Mechanical & Aerospace Engineering Theses & Dissertations

In this thesis, a framework for the analysis and design optimization of ship propellers is developed. This framework can be utilized as an efficient synthesis tool in order to determine the main geometric characteristics of the propeller but also to provide the designer with the capability to optimize the shape of the blade sections based on their specific criteria.

A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional flow effects has been developed. The prediction of the correction factors is achieved using Artificial Neural Networks and Support Vector Regression. This approach results in increased approximation accuracy compared …


Effect Of Design Parameters On Thermal Performance Of A Vane Type Disc Brake Rotor, Yogesh Satish Dalal Apr 2017

Effect Of Design Parameters On Thermal Performance Of A Vane Type Disc Brake Rotor, Yogesh Satish Dalal

Masters Theses

The ever-increasing need of effective transportation puts automobile manufacturers in a situation of continuous improvement and innovate the safety systems. The brake system of an automobile has always been considered as one of the most critical active safety systems. Thermal characteristics of the brake are an important aspect to consider for brake disc durability and performance. The convective cooling of a brake disc is an important factor since design changes in the brake rotor can significantly improve cooling characteristics. The focus of this research is to study and optimize the disc brake rotor for a given heat dissipation rate and …


Corgi: Compute Oriented Recumbent Generation Infrastructure, Christopher Allen Hunt Mar 2017

Corgi: Compute Oriented Recumbent Generation Infrastructure, Christopher Allen Hunt

Master's Theses

Creating a bicycle with a rideable geometry is more complicated than it may appear, with today’s mainstay designs having evolved through years of iteration. This slow evolution coupled with the bicycle’s intricate mechanical system has lead most builders to base their new geometries off of previous work rather than expand into new design spaces. This crutch can lead to slow bicycle iteration rates, often causing bicycles to all look about the same. To combat this, several bicycle design models have been created over the years, with each attempting to define a bicycle’s handling characteristics given its physical geometry. However, these …


A Vertical Axis Wave Turbine With Hydrofoil Blades, Yingchen Yang, Isaiah Diaz, Sergio Soto Quintero Feb 2017

A Vertical Axis Wave Turbine With Hydrofoil Blades, Yingchen Yang, Isaiah Diaz, Sergio Soto Quintero

Mechanical Engineering Faculty Publications and Presentations

This work discusses a new wave energy converter (WEC) design that, when deployed in waves, performs unidirectional rotation about a vertical shaft. The uniqueness of this new WEC design is on utilizing omnidirectional water flow generated by waves to drive a rotor to perform unidirectional rotation about a vertical axis. This unique feature circumvents the frequency-dependent issue of common WECs, and eliminate realignment needs to cope with dynamically changing wave propagation directions. The key component of the WEC is a rotor, which has a vertical shaft with a number of blades mounted to it. Each blade has a hydrofoil-shaped cross …


Analytical Solutions And Multiscale Creep Analysis Of Functionally Graded Cylindrical Pressure Vessels, Jasem Amjad Ahmed Jan 2017

Analytical Solutions And Multiscale Creep Analysis Of Functionally Graded Cylindrical Pressure Vessels, Jasem Amjad Ahmed

LSU Doctoral Dissertations

This study deals with the time-dependent creep analysis of functionally graded thick-cylinders under various thermal and mechanical boundary conditions. Firstly, exact thermoelastic stress, and iterative creep solutions for a heat generating and rotating cylindrical vessel made of functionally graded thermal and mechanical properties are proposed. Equations of equilibrium, compatibility, stress-strain, and strain-displacement relations are solved to obtain closed-form initial stress and strain solutions. It is found that material gradient indices have significant influences on thermoelastic stress profiles. For creep analysis, Norton’s model is incorporated into rate forms of the above-mentioned equations to obtain time-dependent stress and strain results using an …


From Green Buildings To Green Supply Chains: An Integrated Input Output Life Cycle Assessment And Optimization Framework For Carbon Footprint Reduction Policy Making, N. Muhammad Aslaam, Gokhan Egilmez, Murat Kucukvar, M.Khurrum S. Butta Jan 2017

From Green Buildings To Green Supply Chains: An Integrated Input Output Life Cycle Assessment And Optimization Framework For Carbon Footprint Reduction Policy Making, N. Muhammad Aslaam, Gokhan Egilmez, Murat Kucukvar, M.Khurrum S. Butta

Mechanical and Industrial Engineering Faculty Publications

Purpose: This paper focuses on tracing GHG emissions across the supply chain industries associated with the U.S. residential, commercial and industrial building stock and provides optimized GHG reduction policy plans for sustainable development.

Design/Methodology/Approach: A two-step hierarchical approach is developed. Firstly, Economic Input Output-based Life Cycle Assessment (EIO-LCA) is utilized to quantify the GHG emissions associated with the U.S. residential, commercial and industrial building stock. Secondly, a mixed integer linear programming (MILP) based optimization framework is developed to identify the optimal GHG emissions’ reduction (%) for each industry across the supply chain network of the U.S. economy.

Findings: The results …