Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

University of Massachusetts Amherst

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 155

Full-Text Articles in Mechanical Engineering

Technical Evaluation Of Floating Offshore Wind Plants And Installation Operations, Cengizhan Cengiz Mar 2024

Technical Evaluation Of Floating Offshore Wind Plants And Installation Operations, Cengizhan Cengiz

Masters Theses

Offshore wind energy is witnessing remarkable growth, driven by the global shift towards sustainable and renewable energy sources. A pivotal innovation in this domain is floating offshore wind technology, which represents a transformative opportunity in harnessing wind energy from deep waters, where conventional fixed-bottom offshore wind systems face limitations due to depth constraints and escalating costs. In light of regional commitments to lower carbon emissions in energy generation, the accessibility of deep-water zones, rich in offshore wind resources, becomes increasingly critical. Despite the promising prospects, the floating offshore wind turbine (FOWT) developments present intricate challenges encompassing design, installation, and operational …


Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel Nov 2023

Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel

Doctoral Dissertations

This dissertation presents a process for directly imprinting or embossing extruded polymers as an advancement in roll-to-roll (R2R) embossing methods that avoids the problems of converting preformed films, increases throughput, and reduces costs. A proof-of-concept R2R apparatus was designed and constructed for directly embossing extruded polymer, and experimental results were evaluated. This laboratory scale R2R apparatus employed a thin metal ribbon belt mold with micro or nano scale features in a calendering setup, with a close coupled induction heating (IH) coil to preheat the ribbon mold above glass transition temperature (Tg) of the polymer, prior to contact with …


Improving Energy Efficiency Of School Buildings With Solar-Assisted Cooling For The Maldives, Ahmed Fathhee Aug 2023

Improving Energy Efficiency Of School Buildings With Solar-Assisted Cooling For The Maldives, Ahmed Fathhee

Masters Theses

Anthropogenic activities are responsible for the impact of global climate change because of burning fossil fuels releasing harmful gases into the environment. As a result, the global temperature has risen about 1.18 °C since 1880, causing the global sea level to rise by 178 mm over the past century. This is a threat to countries that are closer to the ocean, especially the low-lying countries such as the Maldives. It is predicted if the sea level keeps rising, most of these islands could be below sea level by 2030.

The Maldives has a tropical climate requiring cooling to achieve thermal …


The Effects Of Hurricane Wind Field Characteristics On Wind Blade Loads, Michael S. Tsai Aug 2023

The Effects Of Hurricane Wind Field Characteristics On Wind Blade Loads, Michael S. Tsai

Masters Theses

Over recent years, offshore wind energy has been growing around the world. This necessitates placing wind turbines directly in or near the oceans where hurricanes can be. Previous research has suggested that hurricane wind veer and direction change can have adverse loading effects on the turbine. Such effects can create damage to the blade or worsen existing ones. Currently, there is no known design standard for addressing wind veer and direction change specifically from hurricanes. Quantifying the loading contribution from these phenomena is not abundant either.

This thesis seeks to demonstrate a proposed procedure for defining design veer profiles and …


Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren Aug 2023

Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren

Doctoral Dissertations

Additive manufacturing, also called three-dimensional (3D) printing, is an emerging technology for printing net-shaped components layer by layer for applications in automotive, aerospace, biomedical and other industries. In addition to the vast design freedom offered by this approach, metal 3D printing via laser powder-bed fusion (L-PBF) involves large temperature gradients and rapid cooling and provides exciting opportunities for producing microstructures and mechanical properties beyond those achievable by conventional processing routes. Although these extreme printing conditions enable microstructural refinement to the nanoscale for achieving high strength. However, high-strength nanostructured alloys by laser additive manufacturing often suffer from limited ductility. Eutectic high-entropy …


Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete Apr 2023

Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete

Doctoral Dissertations

Latent heat thermal energy storage (LHTES) systems can be used to reduce electric demand when used in conjunction with Combined Heat and Power Plants or HVAC(Heating, Ventilation, Refrigeration and Air-Conditioning), as they can regulate the demand and supply of thermal energy. They can also be used to integrate renewable energy sources with the grid. A design procedure and performance modeling is required for designing and using thermal energy storage systems effectively. We propose hypotheses about the performance of an LHTES device with different operating conditions and material properties, for devices that are governed by different modes of heat transfer. We …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Surface Engineering And Microfabrication Of Pdms-Based Devices For Women’S Health Applications, Jamar Hawkins Apr 2023

Surface Engineering And Microfabrication Of Pdms-Based Devices For Women’S Health Applications, Jamar Hawkins

Doctoral Dissertations

Poly(dimethylsiloxane) (PDMS) is a widely used polymer in biomedical and microfluidics research due to its optical transparency, castability, gas permeability, and relative biocompatibility. However, while the favorable intrinsic properties of the polymer are typically suitable for preventing experimental artifacts, the true advantage of these devices often comes from their customized patterning and design, which can be tailored to specific applications. Critical parameters in biomedical applications such as chemical concentration profiles, fluid streamlines, substrate topography, and mechanical stiffness can all be fine-tuned simply by selecting the appropriate dimensions and arrangement of PDMS microstructures. To address challenges in expanding the application of …


Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss Apr 2023

Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss

Doctoral Dissertations

Designing improved field-effect-transistors (FETs) that are mass-producible and meet the fabrication standards set by legacy silicon CMOS manufacturing is required for pushing the microelectronics industry into further enhanced technological generations. Historically, the downscaling of feature sizes in FETs has enabled improved performance, reduced power consumption, and increased packing density in microelectronics for several decades. However, many are claiming Moore's law no longer applies as the era of silicon CMOS scaling potentially nears its end with designs approaching fundamental atomic-scale limits -- that is, the few- to sub-nanometer range. Ultrathin two-dimensional (2D) materials present a new paradigm of materials science and …


Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose Apr 2023

Wind-Wave Misalignment Effects On Multiline Anchor Systems For Floating Offshore Wind Turbines, Doron T. Rose

Masters Theses

Multiline anchors are a novel way to reduce the cost of arrays of floating offshore wind turbines (FOWTs), but their behavior is not yet fully understood. Through metocean characterization and dynamic simulations, this thesis investigates the effects of wind-wave misalignment on multiline anchor systems. Four coastal U.S. sites are characterized in order to develop IEC design load cases (DLCs) and analyze real-world misaligned conditions. Stonewall Bank, Oregon showed the highest 500-year extreme wave height, at 16.6 m, while Virginia Beach, Virginia showed the highest 500-year wind speed, at 56.8 m/s. Misalignment probability distributions, at all sites, are found to converge …


Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan Jun 2022

Applications Of Thermal Energy Storage With Electrified Heating And Cooling, Erich Ryan

Masters Theses

With a clear correlation between climate change and rising CO2 emissions, decarbonization has garnered serious interest in many sectors to limit the adverse effects of global warming. Heating and cooling systems have been a focus of decarbonization efforts, with heat pumps becoming more popular in the United States and abroad. In fact, heating, ventilation, and air conditioning accounts for nearly 27% of total energy use in the United States [1]. Ground source heat pumps (GSHP) utilizing borehole heat exchangers (BHE) have been shown to be an effective method of electrifying heating and cooling systems, maintaining some of the best …


The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Application Of The New Iec International Design Standard For Offshore Wind Turbines To A Reference Site In The Massachusetts Offshore Wind Energy Area, Samuel C. Roach Mar 2022

Application Of The New Iec International Design Standard For Offshore Wind Turbines To A Reference Site In The Massachusetts Offshore Wind Energy Area, Samuel C. Roach

Masters Theses

This thesis summarizes the simulation and analysis performed for the MassCEC project described herein. The intent was to perform a “dry run” of the new IEC offshore wind turbine design standard, IEC 61400-3-1 and to illustrate the use of that standard in the Massachusetts Offshore Wind Energy Area. IEC 61400-3-1 is a design standard used to ensure wind turbine structural performance over the design life of the machine. Each installed wind turbine must be certified by a Certified Verification Agent using this standard before installation. The certification process typically uses a structural dynamics model to predict a turbine’s structural response …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker Mar 2022

Solidification Experiments And Magnetohydrodynamic Models In Electromagnetic Levitation, Gwendolyn Bracker

Doctoral Dissertations

Electromagnetic levitation (EML) is a technique for containerless processing. The unique environment of containerless processing allows for the study of highly reactive melts at elevated temperatures. In containerless processing, the interface between a melt and its container is removed, reducing chemical contamination. In addition, levitation techniques reduce the available heterogeneous nucleation sites, providing greater access to the undercooled region for solidification studies. Levitation techniques provide the environment to study the fundamental behavior and thermophysical properties of liquid metals. During electromagnetic levitation experiments, magnetohydrodynamic flow is driven in the sample by the electromagnetic force field. This flow can have various effects …


Computational Study Of Internal Flow, Near Nozzle And External Spray Of A Gdi Injector Under Flash-Boiling Conditions, Chinmoy Krushna Mohapatra Mar 2022

Computational Study Of Internal Flow, Near Nozzle And External Spray Of A Gdi Injector Under Flash-Boiling Conditions, Chinmoy Krushna Mohapatra

Doctoral Dissertations

The early and late portions of transient fuel injection have proven to be a rich area
of research, especially since the end of injection can cause a disproportionate amount
of emissions in direct injection internal combustion engines. While simulating the
internal flow of fuel injectors, valve opening and closing events are the perennial
challenges. A typical adaptive-mesh CFD simulation is extremely computationally
expensive, as the small gap between the needle valve and the seat requires very
small cells to be resolved properly. Capturing complete closure usually involves a
topological change in the computational domain. Furthermore, Internal Combustion
Engines(ICE) operating with …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Design And Testing Of A Foundation Raised Oscillating Surge Wave Energy Converter, Jacob R. Davis Oct 2021

Design And Testing Of A Foundation Raised Oscillating Surge Wave Energy Converter, Jacob R. Davis

Masters Theses

Our oceans contain tremendous resource potential in the form of mechanical energy. With the ability to capture and convert the energy carried in surface waves into usable electricity, wave energy converters (WECs) have been a long-held aspiration in ocean renewable energy. One of the most popular wave energy design concepts is the Oscillating Surge Wave Energy Converter (OSWEC). True to their namesake, OSWECs extract energy from the surge force induced by incident waves. In their most basic form, OSWECs are analogous to a bottom-hinged paddle which pitches fore and aft in the direction of wave motion. Most commonly, OSWECs are …


Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako Oct 2021

Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako

Doctoral Dissertations

In the 2015 Paris Agreement, nearly every country pledge through the Nationally Determined Contributions (NDCs) increased adoption of low carbon energy technologies in their energy system. However, allocating investments to different low carbon energy technologies under rising demand for energy and budget constraints, uncertain technical change in these technologies involves maneuvering significant uncertainties among experts, models, and decision-makers. We examine the interactions of low carbon energy sources (LCES) under the condition of deep uncertainty. Deep uncertainty directly impacts the understanding of the role of low carbon energy technologies in climate change mitigation and how much R&D investment should be allocated …


Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas Oct 2021

Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas

Doctoral Dissertations

Offshore wind energy is a rapidly expanding source of renewable energy worldwide, but many aspects of offshore wind turbine behavior are still poorly understood and are not accurately captured by low-cost engineering models used in the design process. To help improve these models, computational fluid dynamics (CFD) can provide valuable insight into the complex fluid flows that affect offshore wind turbine power generation and structural loads. This research uses CFD simulations to examine three main topics important to future offshore wind development: how breaking waves affect structural loads for fixed-bottom wind turbines; how platform motions affect power generation, wake characteristics, …


Visuomotor Adaptation During Asymmetric Walking, Charles Napoli Oct 2021

Visuomotor Adaptation During Asymmetric Walking, Charles Napoli

Masters Theses

Necessary for effective ambulation, head stability affords optimal conditions for the perception of visual information during dynamic tasks. This maintenance of head-in-space equilibrium is achieved, in part, by the attenuation of the high frequency impact shock resulting from ground contact. While a great deal of experimentation has been done on the matter during steady state locomotion, little is known about how head stability or dynamic visual acuity is maintained during asymmetric walking.

In this study, fifteen participants were instructed to walk on a split-belt treadmill for ten minutes while verbally reporting the orientation of a randomized Landolt-C optotype that was …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling Jul 2021

Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling

Masters Theses

Wood has been utilized by humans for thousands of years in the construction of our built environment. More recently, our expanded understanding of the material and the advancement of engineered wood have allowed us to use wood like never before. Concrete and steel, however, have emerged as the main materials used in large scale construction in the late 19th and 20th Centuries. As we are battling and searching for solutions to climate change, the importance of wood in large scale construction has increased as not only is its carbon intensity is lower than steel and concrete, but its …


Finite Element Analysis Of Impact And Cohesion Of Cold Sprayed Particles Onto Non-Planar Surfaces, Zhongkui Liu Jul 2021

Finite Element Analysis Of Impact And Cohesion Of Cold Sprayed Particles Onto Non-Planar Surfaces, Zhongkui Liu

Masters Theses

Compared to traditional thermal spray, cold spray as a new emerging surface treatment eliminates or substantially reduces phase transformation of deposited material and reduces coating porosity. Therefore, the appearance of this new type of surface treatment and additive manufacturing process has attracted considerable attention from researchers. In this research, three-dimensional modeling of Al6061-T6 particle impact and cohesion process was simulated by utilizing commercial finite element analysis (FEA) software ABAQUS/Explicit. To guarantee that a stable bonding phenomenon can be realized in the scope of physical validity, a built-in cohesive contact behavior model was implemented in the simulation to understand the bonding …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell Jun 2021

Material Property Heterogeneity In Dimensional Lumber And Its Relationship To Mass Timber Performance, Fiona O'Donnell

Doctoral Dissertations

According to the Environmental Protection Agency, buildings account for 38% of the United States' carbon dioxide emissions, providing architects and structural engineers a unique opportunity to mitigate a significant factor driving climate change by implementing innovative and sustainable technology in infrastructure design. Wood and mass timber products are becoming an increasingly popular alternative building material due to their economic and environmental benefits. The natural growth of wood leads to highly heterogeneous material properties. Defects such as checks, knots, and localized slope of grain contribute to some of this variation; however, wood properties vary significantly even in clear wood. Using mass …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …