Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

The Fracture Behavior Of An Al–Mg–Si Alloy During Cyclic Fatigue, Diya Azzam, Craig Menzemer, Tirumalai Srivatsan Oct 2015

The Fracture Behavior Of An Al–Mg–Si Alloy During Cyclic Fatigue, Diya Azzam, Craig Menzemer, Tirumalai Srivatsan

Craig Menzemer

In this paper, is presented and discussed the cyclic fracture behavior of the Al–Mg–Si alloy 6063 that is a candidate used in luminaire light poles. The light poles were subject to fatigue deformation. Test sections were taken from the failed region of the light pole and carefully examined in a scanning electron microscope with the objective of rationalizing the macroscopic fracture mode and intrinsic micromechanisms governing fracture under cyclic loading. The fatigue fracture surface of the alloy revealed distinct regions of early microscopic crack growth, stable crack growth and unstable crack growth and overload. An array of fine striations was …


The Quasi-Static Deformation, Failure, And Fracture Behavior Of Titanium Alloy Gusset Plates Containing Bolt Holes, Therese Hurtuk, Craig Menzemer, Anil Patnaik, Tirumalai Srivatsan, Kannan Manigandan, T. Quick Oct 2015

The Quasi-Static Deformation, Failure, And Fracture Behavior Of Titanium Alloy Gusset Plates Containing Bolt Holes, Therese Hurtuk, Craig Menzemer, Anil Patnaik, Tirumalai Srivatsan, Kannan Manigandan, T. Quick

Craig Menzemer

In this article, the influence of bolt holes, specifically their number and layout on strength, deformation, and final fracture behavior of titanium alloy gusset plates under the influence of an external load is presented and discussed. Several plates having differences in both the number and layout of the bolt holes were precision machined and then deformed under quasi-static loading. The specific influence of number of bolt holes and their layout on maximum load-carrying capability and even fracture load was determined. The conjoint influence of bolt number, bolt layout pattern, nature of loading, contribution from local stress concentration, and intrinsic microstructural …


A Study To Evaluate And Understand The Response Of Aluminum Alloy 2026 Subjected To Tensile Deformation, Daniel Lam, Craig Menzemer, Tirumalai Srivatsan Oct 2015

A Study To Evaluate And Understand The Response Of Aluminum Alloy 2026 Subjected To Tensile Deformation, Daniel Lam, Craig Menzemer, Tirumalai Srivatsan

Craig Menzemer

The strain concentration factors were determined for aluminum alloy 2026 in the T3511 temper using multi-hole structural coupon specimens. Samples of the alloy were evaluated for both the 6.25 mm (0.25 in.) thick and 10 mm (0.4 in.) thick specimens and having widths of 50 mm (2 in.) and 100 mm (4 in.), respectively. For the case of the specimens that were 50 mm in width the mechanical tests were conducted for both the open hole and filled hole conditions and the corresponding strain concentration value was determined. Threaded fasteners having collars were used for the case of the filled …


The Bolt Bearing Response And Tensile Deformation Capacity Of Plates Made From A Titanium Alloy, Nicholas Tinl, Craig Menzemer, Anil Patnaik, Tirumalai Srivatsan Oct 2015

The Bolt Bearing Response And Tensile Deformation Capacity Of Plates Made From A Titanium Alloy, Nicholas Tinl, Craig Menzemer, Anil Patnaik, Tirumalai Srivatsan

Craig Menzemer

In this article, the bearing capacity and elongation characteristics of bolt holes in a titanium alloy (i.e., Ti-6Al-4V) deformed in uniaxial tension is presented and discussed. The specific role played by bolt hole confinement on bearing capacity is highlighted. The nature of final fracture is examined and the intrinsic features present on the fracture surface are rationalized in concurrence with macroscopic mechanical response. The behavior of the candidate alloy (Ti-6Al-4V) is compared with conventionally preferred and chosen candidate materials steel and aluminum alloys. An empirical relationship suitable for purpose of structural design is proposed.


An Investigation And Understanding Of The Mechanical Response Of Palmyrah Timber, Hatim Sobier, Craig Menzemer, Tirumalai Srivatsan Oct 2015

An Investigation And Understanding Of The Mechanical Response Of Palmyrah Timber, Hatim Sobier, Craig Menzemer, Tirumalai Srivatsan

Craig Menzemer

The Palmyrah tree flourishes in tropical areas around South East Asia, and particularly in Sri Lanka. Palmyrah is an important economic resource for the region, and has found use in structural applications for both residential dwellings and commercial buildings. While there is a great deal of local field experience with Palmyrah, the mechanical properties have not been well characterized or understood. In an effort to assist engineers with the design and efficient use of the timber, a study was undertaken to evaluate the mechanical response of Palmyrah and develop estimates of design allowable properties. Properties evaluated include static bending strength, …


Understanding The Mechanical Response Of Built-Up Welded Beams Made From Commercially Pure Titanium And A Titanium Alloy, Anil Patnaik, Narendra Poondla, Craig Menzemer, Tirumalai Srivatsan Oct 2015

Understanding The Mechanical Response Of Built-Up Welded Beams Made From Commercially Pure Titanium And A Titanium Alloy, Anil Patnaik, Narendra Poondla, Craig Menzemer, Tirumalai Srivatsan

Craig Menzemer

During the last two decades, titanium has gradually grown in stature, strength and significance to take on the recognition of being a modern and high performance metal that is noticeably stronger and concurrently lighter than the most widely chosen and used steels in a spectrum of industrial applications. Technological innovations have necessitated reduction of part weight, cost and lead time, including concurrent enhancement of performance of structural parts and components made using titanium and its alloys. This has provided the impetus to develop economically viable structural design methodologies and specifications, while at the same time bringing forth innovative and economically …


A Study Of Fatigue And Fracture Response Of Cantilevered Luminaire Structures Made From Aluminum Alloy 6063, Craig Menzemer, Diya Azzam, Tirumalai Srivatsan Oct 2015

A Study Of Fatigue And Fracture Response Of Cantilevered Luminaire Structures Made From Aluminum Alloy 6063, Craig Menzemer, Diya Azzam, Tirumalai Srivatsan

Craig Menzemer

In the experimental results elegantly and exhaustively elaborated upon in this paper the local stresses, obtained from finite element analysis, was used to develop estimates of the stress intensity factor (SIF). In combination with crack growth data, the fatigue lives of both the through-plate and an integrally stiffened socket connection were estimated using software developed by the U.S. Air Force (and referred to as AFGROW). The fatigue life estimates correlated well with the test results provided the crack growth rate data was obtained under conditions of minimal closure at higher stress ratios (of the order R = 0.7). In an …


Isolating Corrosion Of Steel Plates Coupled With Titanium, Anil Patnaik, X. Shan, M. Adams, T. Srivatsan, Craig Menzemer, Joe Payer Oct 2015

Isolating Corrosion Of Steel Plates Coupled With Titanium, Anil Patnaik, X. Shan, M. Adams, T. Srivatsan, Craig Menzemer, Joe Payer

Craig Menzemer

Over twenty six percent of the bridges in the United States are structurally deficient or functionally obsolete. Corrosion of steel used in structures like bridges and buildings is a problem that has gained increased interest and focused concern. Steel is often the metal that is preferred for use in such applications due to a synergism of ease of availability, acceptable mechanical properties and cost effectiveness. Through the years, titanium has grown in strength, stature and significance to be recognized as an emerging high performance metal that is both stronger and lighter than steel. A distinctive property of titanium and its …


Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer Oct 2015

Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer

Craig Menzemer

In this paper, the cyclic stress amplitude controlled high-cycle fatigue properties and final fracture behavior of commercially pure titanium (Grade 2) are presented and discussed. The material characterization was developed and put forth for selection and use in a spectrum of applications spanning the industries of aerospace, defense, chemical, marine, and commercial products. Test specimens were prepared from the as-received plate stock of the material with the stress axis both parallel (longitudinal) and perpendicular (transverse) to the rolling direction of the plate. The test specimens were cyclically deformed at a constant load ratio of 0.1, at different values of maximum …


Infuence Of Welding And Heat Treatment On Microstructure, Properties And Fracture Behaviour Of A Wrought Aluminium Alloy, Eric Hilty, Craig Menzemer, Kannan Manigandan, Tirumalai Srivatsan Oct 2015

Infuence Of Welding And Heat Treatment On Microstructure, Properties And Fracture Behaviour Of A Wrought Aluminium Alloy, Eric Hilty, Craig Menzemer, Kannan Manigandan, Tirumalai Srivatsan

Craig Menzemer

Welding of aluminium alloy, belonging to the 6XXX series, exerts an adverse influence on its strength. The loss of strength immediately adjacent to the welds can have an influence on overall behaviour of the structure or component. In this study, the technique of gas metal arc welding was used. The filler material used was a silicon-containing aluminium alloy. Subsequent to welding, the alloy (6061-T4) was subjected to post-weld heat treatment (PWHT) at 185°C for 6 h. Both the as-welded and artificially aged extrusions of aluminium alloy 6061 were examined for both microstructural development and resultant influence on mechanical properties. Light …


The Bearing Strength And Fracture Behavior Of Bolted Connections In Two Aluminum Alloys, Nicholas Tinl, Craig Menzemer, Kannan Manigandan, Tirumalai Srivatsan Oct 2015

The Bearing Strength And Fracture Behavior Of Bolted Connections In Two Aluminum Alloys, Nicholas Tinl, Craig Menzemer, Kannan Manigandan, Tirumalai Srivatsan

Craig Menzemer

In this paper, the bearing capacity, taken as a combination of strength, elongation, and failure by fracture characteristics of bolt holes in two aluminum alloys, 5052-H32 and 6061-T6, that were deformed in uniaxial tension is presented and discussed. The specific role played by bolt hole confinement on the bearing capacity of each aluminum alloy is highlighted. An increase in the bearing ratio caused plastic deformation around the holes to gradually increase. For both the chosen aluminum alloys the average bearing ratio at the time of failure of the test sample was found to vary with end distance. The experimentally determined …