Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Characterization Of Single- And Multi-Phase Shock-Accelerated Flows, Patrick John Wayne Jul 2019

Characterization Of Single- And Multi-Phase Shock-Accelerated Flows, Patrick John Wayne

Mechanical Engineering ETDs

Experiments conducted in the Shock Tube Facility at the University of New Mexico are focused on characterization of shock-accelerated flows. Single-phase (gaseous) initial conditions consist of a heavy gas column of sulfur hexafluoride seeded with approximately 11% acetone gas by mass. Visualization of the image plane for gaseous initial conditions is accomplished via planar laser-induced fluorescence (PLIF) with a high-powered Nd:YAG ultraviolet laser and an Apogee Alta U-42 monochrome CCD camera, with a quantum efficiency > 90%. Multi-phase (gas-solid) initial conditions consist of glass micro-beads deposited on small 1-cm diameter discs of specific surface chemistry, mounted flush with the bottom wall …


A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier Jan 2019

A Study Of Several Applications Of Parallel Computing In The Sciences Using Petsc, Nicholas Stegmeier

Electronic Theses and Dissertations

The importance of computing in the natural sciences continues to grow as scientists strive to analyze complex phenomena. The dynamics of turbulence, astrophysics simulations, and climate change are just a few examples where computing is critical. These problems are computationally intractable on all computing platforms except supercomputers, necessitating the continued development of efficient algorithms and methodologies in parallel computing. This thesis investigates the use of parallel computing and mathematical modeling in the natural sciences through several applications, namely computational fluid dynamics for impinging jets in mechanical engineering, simulation of biofilms in an aqueous environment in mathematical biology, and the solution …


Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott Oct 2018

Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P0030


Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman Jun 2016

Large Length Scale Capillary Fluidics: From Jumping Bubbles To Drinking In Space, Andrew Paul Wollman

Dissertations and Theses

In orbit, finding the "bottom" of your coffee cup is a non-trivial task. Subtle forces often masked by gravity influence the containment and transport of fluids aboard spacecraft, often in surprising non-intuitive ways. Terrestrial experience with capillary forces is typically relegated to the micro-scale, but engineering community exposure to large length scale capillary fluidics critical to spacecraft fluid management design is low indeed. Low-cost drop towers and fast-to-flight International Space Station (ISS) experiments are increasing designer exposure to this fresh field of study. This work first provides a wide variety of drop tower tests that demonstrate fundamental and applied capillary …


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel Oct 2015

A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel

Terrence R Meyer

The opaque nature of many multiphase flows has long posed a significant challenge to the visualization and measurement of desired characteristics. To overcome this difficulty, X-ray imaging, both in the form of radiography and computed tomography, has been used successfully to quantify various multiphase flow phenomena. However, the relatively low temporal resolution of typical X-ray systems limit their use to moderately slow flows and time-average values. This paper discusses the development of an X-ray detection system capable of high-speed radiographic imaging that can be used to visualize multiphase flows. Details of the hardware will be given and then applied to …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2007

Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

This paper considers the low-Reynolds-number flow of an incompressible fluid contained in the gap between two coaxial cones with coincident apices and bounded by a spherical lid. The two cones and the lid are allowed to rotate independently about their common axis, generating a swirling motion. The swirl induces a secondary, meridional circulation through inertial effects. For specific configurations complex eigenmodes representing an infinite sequence of eddies, analogous to those found in two-dimensional corner flows and some three-dimensional geometries, form a component of this secondary circulation. When the cones rotate these eigenmodes, arising from the geometry, compete with the forced …


Viscoelastic Flow In Rotating Curved Pipes, Yitung Chen, Huajun Chen, Jinsuo Zhang, Benzhao Zhang Aug 2006

Viscoelastic Flow In Rotating Curved Pipes, Yitung Chen, Huajun Chen, Jinsuo Zhang, Benzhao Zhang

Mechanical Engineering Faculty Research

Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean’s approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu Sep 2004

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu

Transmutation Sciences Materials (TRP)

Dr. Jiang Ma and Mr. Xiaolong Wu worked in LANL between July 1 and Sept. 15 to conduct the experiment. Test of the corrosion of different materials in LBE was performed. The influence of the process of gas introduction to the LBE was studied. Data analysis work was performed based on accumulated data. In the same time, progress has been made in the simulation for transport in oxygen mixing, and one paper was presented in a conference. Another paper was composed and submitted to IEEE International Symposium of Circuits and Systems for the track Chemical Sensors. Preparation of a paper …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (Aug. 01 – Oct. 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim Oct 2002

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (Aug. 01 – Oct. 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim

Transmutation Sciences Materials (TRP)

After two month intensive work in LANL, some preliminary sensor calibration curves have been obtained. Further data analysis shall be performed to assess the theoretical and measured data. Also, a new experimental apparatus shall be designed and located in UNLV to continue the left work.

Technical Progress:

• A set of calibration curves of voltage vs. temperature ranging from 3000C to 5000C under various oxygen concentrations in liquid LBE for the YSZ oxygen sensor has been obtained and has been reported in one paper.

• A meeting with LBE committee and other faculty members in AAA …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (May 01 – July 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim Jul 2002

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (May 01 – July 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim

Transmutation Sciences Materials (TRP)

Accurate measurement of the oxygen concentration in liquid Lead-Bismuth Eutectic (LBE) cooling system is critical in the active control of the corrosion at the interface between LBE and the stainless steel of transport tubes. Currently, LANL (Los Alamos National Laboratory) scientists have employed an automobile-style YSZ (Yttria Stabilized Zirconia) oxygen sensor unit to measure oxygen levels in an engineeringscaled LBE test system. Although the theoretical model for calculating oxygen concentration based on voltage measurement of YSZ sensor in static conditions is well understood, there is an urgent and strong need to obtain a complete set of calibration curves for YSZ …


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …