Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage Jan 2020

Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage

Sustainability Conference

Water security is an imperative part of high-functioning societies. Currently, large populations of the globe live in water-impoverished or water-stressed areas. With climate change and growing global populations, projections show more people being impacted by issues of water shortage.

One solution to water security is the implementation of desalination, specifically with reverse osmosis systems. This presentation walks through the history, capabilities, future work, and explanations on how reverse osmosis systems work. With continued research on improving desalination, communities in both developed and developing nations around the world can work towards total water security.


Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin Dec 2012

Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin

Andrew Wesolek

This exhibition, presented in the Merrill-Cazier Library, captured the history and accomplishments of the GAS program. Click the download button to see a PowerPoint presentation featuring images and text from the exhibition.


Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin Jul 2012

Merrill-Cazier Library Gas Exhibition, Betty Rozum, Andrew Wesolek, Pamela N. Martin

Education and Outreach

This exhibition, presented in the Merrill-Cazier Library, captured the history and accomplishments of the GAS program. Click the download button to see a PowerPoint presentation featuring images and text from the exhibition.


Surface Geometry And Heat Flux Effect On Thin Wire Nucleate Pool Boiling Of Subcooled Water In Microgravity, Troy Munro, Andrew Fassman Mar 2011

Surface Geometry And Heat Flux Effect On Thin Wire Nucleate Pool Boiling Of Subcooled Water In Microgravity, Troy Munro, Andrew Fassman

Presentations

The motivation of this nucleate boiling research is to understand the effects of surface geometry and heat flux as applied to a thin wire heater. This will further the understanding of the fundamental behaviors of boiling onset, steady state heat transfer, and bubble dynamics with respect to nucleate boiling with the goal of creating efficient thermal management systems for future space applications. Using three different thin platinum wire geometries and five different power levels, subcooled water was boiled over a period of approximately 30 seconds for 15 parabolic arcs to simulate microgravity. To represent the trends in bubbles behavior across …