Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan May 2022

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan

Mechanical Engineering Undergraduate Honors Theses

Lithium-ion batteries (LIBs) are currently the best method to store electrical energy for use in portable electronics and electronic vehicles. New cathode materials for LIBs are consistently studied and researched, but few are as promising and attainable as nickel-rich transition metal oxides such as LiNi1-x-yMnxCoyO2 (NMC). NMC materials exist with many different mass ratios, but higher nickel content materials provide higher energy density. With this increase in capacity comes a sacrifice with cyclability, as high-nickel NMC variants are prone to structure collapse, transition metal dissolution, and cracks due to volume change. In this report, mechanical modification of the electrode by …


Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz May 2020

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz

Mechanical Engineering Undergraduate Honors Theses

Thermal management of electronic devices has become an increasingly vital field of study with the rapid miniaturization of many key electrical components. With the significant improvement of semiconductor manufacturing and intensified focus on interconnects, electronic devices have decreased in size at an incredible rate. Decreasing spatial requirements is essential to improving device capabilities as the electronic system is able to incorporate more components. Currently, electronic systems are drastically limited by the capabilities of their cooling mechanisms. Smaller devices lead to large increases in the energy density of the system and require more powerful cooling systems to maintain proper component operating …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn May 2019

Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn

Mechanical Engineering Undergraduate Honors Theses

Infections associated with biofilm growth are usually challenging to eradicate due to their high tolerance toward antibiotics [11, 12]. Biofilms often form on the inert surfaces of medically implanted devices [13]. No matter the sophistication, microbial infections can develop on all medical devices and tissue engineering constructs [12]. Related infections lead to 2 million cases annually in the U.S., costing the healthcare system over $5 billion in additional healthcare expenses [12].

Novel solutions to biofilm’s microbial colonization span the spectrum of engineering and science disciplines. Yet a practical solution still does not exist. The research presented here will explore a …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …


Measurement Of The Coefficient Of Thermal Expansion Of Superconducting Thin Films Using Powder X-Ray Diffraction, Biju Chandran, R. Calvin Goforth, S. Nasrazadani Jan 1992

Measurement Of The Coefficient Of Thermal Expansion Of Superconducting Thin Films Using Powder X-Ray Diffraction, Biju Chandran, R. Calvin Goforth, S. Nasrazadani

Journal of the Arkansas Academy of Science

The High Density Electronics Center (HiDEC) at the University of Arkansas, Fayetteville is developing the technology for High Temperature Superconductor Multi-Chip Modules (HTSC-MCM's). As part of this work, we are looking at the mechanical properties of HTSC materials. An important mechanical property which influences the mechanical integrity of the hybrid MCMis the coefficient of thermal expansion (CTE) of the HTSC films. As a first step in developing a procedure for the determination of the CTE of HTSC materials, the lattice parameters and the CTE of an alpha-alumina substrate have been determined by powder x-ray diffraction technique. An extension of this …