Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Investigation Of Fiber Orientation And Mechanical Properties Of Pyrolysis Recycled Carbon-Fiber Reinforced Thermoset Composite, Reva N. Simmons, Harry Lee, Garam Kim Jan 2023

Investigation Of Fiber Orientation And Mechanical Properties Of Pyrolysis Recycled Carbon-Fiber Reinforced Thermoset Composite, Reva N. Simmons, Harry Lee, Garam Kim

Discovery Undergraduate Interdisciplinary Research Internship

With increasing demand of carbon fiber reinforced fiber thermoset composites, establishing a sustainable cycle for these materials becomes crucial. Pyrolysis is a process of reclaiming carbon fiber from thermoset composites by thermally degrading the polymer at high temperatures allowing the fibers to be extracted. Carbon fiber reclaimed through current pyrolysis processes for thermoset composites typically loses its original shape and orientation, making it difficult to reorganize the fibers. This study investigated the feasibility of maintaining the fiber orientations for continuous fiber reinforced thermoset composite during pyrolysis by stitching the carbon fiber layup to a conformable copper mesh during the manufacturing …


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


Study On Criterion Of Fabricating Columnar Dendrite Structure Dz466 Superalloy Based On Lmc Process, Xun Sun Oct 2016

Study On Criterion Of Fabricating Columnar Dendrite Structure Dz466 Superalloy Based On Lmc Process, Xun Sun

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


The Influence Of Welding Parameters On Initial Instability Dynamics During Solidification, Fengyi Yu, Yanhong Wei, Xiaohong Zhan Oct 2016

The Influence Of Welding Parameters On Initial Instability Dynamics During Solidification, Fengyi Yu, Yanhong Wei, Xiaohong Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Prediction Of The Graphite Morphology And Nodularity Based On The Quantitative Sample Solidification Cooling Curves, Han Ye, Chao Li, Qingyou Han, Xiangjie Yang Oct 2016

Prediction Of The Graphite Morphology And Nodularity Based On The Quantitative Sample Solidification Cooling Curves, Han Ye, Chao Li, Qingyou Han, Xiangjie Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Temperature Filed Numerical Simulation Of Laser Welding For Ta15 Titanium Alloy By Coupling Thermal And Phase Transformation, Wenmin Ou, Yanhong Wei, Xiaohong Zhan, Gaoyang Mi Oct 2016

Temperature Filed Numerical Simulation Of Laser Welding For Ta15 Titanium Alloy By Coupling Thermal And Phase Transformation, Wenmin Ou, Yanhong Wei, Xiaohong Zhan, Gaoyang Mi

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Simulation On The Sealing Of Aluminum Ball Joint, Haobin Tian, Xiaohang Liu, Xuelei Li, Jun Feng Oct 2016

Simulation On The Sealing Of Aluminum Ball Joint, Haobin Tian, Xiaohang Liu, Xuelei Li, Jun Feng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Modeling And Simulation Of Dendrite And Porosity Evolution During Solidification In The Molten Pool Of Al–Cu Alloys, Cheng Gu, Yanhong Wei, Xiaohong Zhan Oct 2016

Modeling And Simulation Of Dendrite And Porosity Evolution During Solidification In The Molten Pool Of Al–Cu Alloys, Cheng Gu, Yanhong Wei, Xiaohong Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fe Simulation For Accuracy Evolution And Control In Hot Forging Of Non-Circular Spur Bevel Gear, Wuhao Zhuang, Xinghui Han Oct 2016

Fe Simulation For Accuracy Evolution And Control In Hot Forging Of Non-Circular Spur Bevel Gear, Wuhao Zhuang, Xinghui Han

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen Aug 2016

High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A better understanding would enable the ability to develop improvements in the manufacturing of PBX and rocker propellant. The method utilized to evaluate the mechanical properties of …


Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage, Guoping Xiong Oct 2013

Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage, Guoping Xiong

Open Access Dissertations

The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …