Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering

PDF

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang Dec 2017

Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang

Electronic Theses and Dissertations

Powder bed fusion additive manufacturing (PBF-AM) has been broadly utilized to fabricate lightweight cellular structures, which have promising potentials in many engineering applications such as biomedical prosthesis, aerospace, and architectural structures due to their high performance-to-weight ratios and unique property tailorabilities. To date, there is still a lack of adequate understanding of how the cellular materials are influenced by both the geometry designs and process parameters, which significantly hinders the effective design of cellular structures fabricated by PBF-AM for critical applications. This study aims to demonstrate a cellular structure design methodology that integrates geometrical design and process-material property designs. Utilizing ...


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes ...


3d Printing Of Functional Materials: Surface Technology And Structural Optimization, Dongxing Zhang Sep 2017

3d Printing Of Functional Materials: Surface Technology And Structural Optimization, Dongxing Zhang

Electronic Thesis and Dissertation Repository

There has been a surge in interest of 3D printing technology in the recent 5 years with respect to the equipment and materials, because this technology allows one to create sophisticated and customized parts in a manner that is more efficient regarding both material and time consumption. However, 3D printing has not yet become a mainstream technology within the established manufacturing routes. One primary factor accounting for this slow progress is the lack of a broad variety of 3D printable materials, resulting in limited functions of 3D printed parts.

To bridge this gap, I present an integrated strategy to fabricate ...


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations ...


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key ...


A Study In The Use Of Elastic Materials In Expandable Containment Units, Andrew J. Eisenman, Joby Anthony Iii, David Satagaj Jun 2017

A Study In The Use Of Elastic Materials In Expandable Containment Units, Andrew J. Eisenman, Joby Anthony Iii, David Satagaj

Montview Liberty University Journal of Undergraduate Research

The rigidity of materials in conjunction with the aspect of elasticity has been a concern of modern technologies and construction in recent centuries because of the advantages that expandable storage would bring to the fields of containment units with respect to population growth and space exploration. The world population is currently growing at an exponential rate, and as our population grows, the more important it will become to have containment units that can both contain large volumes of material as well as minuscule amounts of material without wasting space. In order accomplish this, we will need a new type of ...


Development Of Novel, Microscale Fracture Toughness Testing For Adhesives, Dillon S. Watring Jun 2017

Development Of Novel, Microscale Fracture Toughness Testing For Adhesives, Dillon S. Watring

FIU Electronic Theses and Dissertations

The purpose of this thesis was to develop microscale fracture toughness tests to be performed in situ based off previously used macroscale fracture toughness tests. The thesis also was to use these tests to perform in situ analysis and imaging of reinforced adhesives during crack propagation. Two different fracture toughness tests were developed for this thesis through developing fixtures and sample geometry. A microscale double cantilever beam (DCB) test was developed for mode I fracture (opening mode). A microscale end notch flexure (ENF) test was developed for mode II fracture (sliding mode).

Three different types of materials were used as ...


Cellulose–Hemicellulose And Cellulose–Lignin Interactions During Fast Pyrolysis, Jing Zhang, Yong S. Choi, Chang G. Yoo, Tae H. Kim, Robert C. Brown, Brent H. Shanks Jun 2017

Cellulose–Hemicellulose And Cellulose–Lignin Interactions During Fast Pyrolysis, Jing Zhang, Yong S. Choi, Chang G. Yoo, Tae H. Kim, Robert C. Brown, Brent H. Shanks

Brent H. Shanks

Previously, the primary product distribution resulting from fast pyrolysis of cellulose, hemicellulose, and lignin was quantified. This study extends the analysis to the examinations of interactions between cellulose–hemicellulose and cellulose–lignin, which were determined by comparing the pyrolysis products from their native mixture, physical mixture, and superposition of individual components. Negligible interactions were found for both binary physical mixtures. For the native cellulose–hemicellulose mixture, no significant interaction was identified either. In the case of the native cellulose–lignin mixture, herbaceous biomass exhibited an apparent interaction, represented by diminished yield of levoglucosan and enhanced yield of low molecular weight ...


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal ...


An Experimental And Numerical Study Of Nanomechanical Behavior Of Hard/Soft Multilayered Coatings, Benigno Sandoval May 2017

An Experimental And Numerical Study Of Nanomechanical Behavior Of Hard/Soft Multilayered Coatings, Benigno Sandoval

Mechanical Engineering ETDs

Multilayer thin film composites, sometimes referred to as nanolaminates, have emerged as an important subset of materials with novel, and often tunable, properties such as high strength, high toughness, and resistance to wear or corrosion. Often fabricated using alternating layers of two or more materials, these multilayer thin film coatings are typically expensive and time intensive to fabricate and characterize and exhibit novel responses to nanomechanical testing such as plasticity during unloading. This thesis explores the nanoindentation response of hard/soft multilayer coatings through examination of the optical coating Al/SiC and similar coating Al/SiO2. Instrumented indentation was used ...


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is ...


Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden Feb 2017

Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

Application of carbon nanotube coatings to computer keyboards in order to reduce the spread of bacteria in hospitals and homes.

Keywords: carbon nanotube, bacteria, antimicrobial, keyboard, design, MRSA, biofilm


Composite Cold Expansion Tooling, Andrew Amos Jan 2017

Composite Cold Expansion Tooling, Andrew Amos

All Undergraduate Projects

In the world of aircraft manufacturing, cold expansion products literally hold these aircraft together. The problem faced today is that the Little Brute Hydraulic Puller designed and built by Fatigue Technology Inc. is a handheld steel hydraulic cylinder that is heavy and expensive to produce. In a market that demands continuous improvement, there is a constant push to make the product cheaper, better and lighter. In order to accomplish this demand a composite tube will be substituted in the design as the primary pressure cylinder instead of the traditional steel pressure cylinder in order to create a lighter and cheaper ...


A Simple Embedded Atom Potential For Palladium-Hydride, Yang Zhang Jan 2017

A Simple Embedded Atom Potential For Palladium-Hydride, Yang Zhang

Theses, Dissertations and Capstones

Metal Hydride systems are an important research topic in material science because of their many practical, industrial, and scientific applications. Therefore, the development of reliable and efficient interatomic potentials for metal hydrides systems, to be utilized in atomistic modeling, can be of great value in accelerating the research in this field. The embedded-atom method (EAM), based on the density functional theory (DFT), has the advantage of being both computationally efficient and being well suited for modeling metal hydride systems. In this work, the author has developed an efficient EAM potential for the palladium hydride (Pd-H) alloy system. Contrary to previously ...