Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering

PDF

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi Nov 2019

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi

LSU Doctoral Dissertations

Phase field method has become a popular tool to investigate the microstructure evolution during the solidification. Quantitative predictions using this method is still limited, and in this dissertation, we try to study this problem from different perspectives.

Most of the phase field models consider the solid-liquid interface to be in local equilibrium. Solidification during some manufacturing processes like selective laser melting, and electron beam additive manufacturing is rapid and far from equilibrium which can result in supersaturated solid solutions, segregation-free crystals, or metastable phases. Before obtaining any conclusions from the phase field simulations, we must know the answer for “which …


An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris Aug 2019

Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris

University of New Orleans Theses and Dissertations

Abstract

An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


Fracture Toughness Improvement Of ����� Ceramics By Grain Size Control And Ductile Phase Reinforcement, Kesong Wang May 2019

Fracture Toughness Improvement Of ����� Ceramics By Grain Size Control And Ductile Phase Reinforcement, Kesong Wang

McKelvey School of Engineering Theses & Dissertations

This study used grain size control and ductile phase reinforcement to improve fracture toughness of ����� ceramics. Alpha alumina particles of 100 nm, 0.5-1 micrometers, and 10 micrometers were coated with 1-5 nm nickel by electroless nickel plating (ENP). The coated powders were consolidated at 1200℃-1500℃ by spark plasma sintering (SPS). The sintered samples were annealed at 1100 oC for 1.5 hours and 10 hours to determine the effect of post sintering annealing on hardness and fracture toughness. Density of the samples were measured by the standard Archimedes method using a 5 mL pycnometer. Hardness values were determined by Vickers …


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn May 2019

Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn

Mechanical Engineering Undergraduate Honors Theses

Infections associated with biofilm growth are usually challenging to eradicate due to their high tolerance toward antibiotics [11, 12]. Biofilms often form on the inert surfaces of medically implanted devices [13]. No matter the sophistication, microbial infections can develop on all medical devices and tissue engineering constructs [12]. Related infections lead to 2 million cases annually in the U.S., costing the healthcare system over $5 billion in additional healthcare expenses [12].

Novel solutions to biofilm’s microbial colonization span the spectrum of engineering and science disciplines. Yet a practical solution still does not exist. The research presented here will explore a …


Autojack - Hydraulic Powertrain System, Tyce Vu Jan 2019

Autojack - Hydraulic Powertrain System, Tyce Vu

All Undergraduate Projects

A primary problem for mechanics and automotive enthusiasts is the risk associated with lifting and securing a vehicle with conventional jack stands. Often times, improper jack-stand installation results in the vehicle collapsing unexpectedly, causing injury and/or death. This problem can be minimized through the application of a newly re-designed vehicle lifting system. The conventional method for lifting cars is time consuming and can be unsafe in many circumstances. A better, safer, and more efficient lift design was needed; the AutoJack. The approach of the AutoJack design was entirely focused on the safety of lifting a vehicle. Safety was improved by …


Experimental Measurement Of Dielectric Properties Of Powdery Materials Using A Coaxial Transmission Line, Robert Tempke Jan 2019

Experimental Measurement Of Dielectric Properties Of Powdery Materials Using A Coaxial Transmission Line, Robert Tempke

Graduate Theses, Dissertations, and Problem Reports

This study proposes a standard methodology for coaxial dielectric property measurements of powdery materials (1-10GHz) using a coaxial transmission line. Four powdery materials with dielectric constants ranging from 3.5 to 70 (SiO2, Al2O3, CeO2, and TiO2) were experimentally investigated at varying volume loading fractions in a paraffin mixture. A statistically significant number of paraffin heterogeneous-mixtures was synthesized for all dielectric powders. The dielectric properties of the constitutive materials were determined using appropriate mixture equations. The sensitivity of the equations dielectric prediction to volume loading is discussed with guidance on selecting the best mixing equation. It was determined that low volume …


Carbon Fiber Monocoque, Dan Brown, Leland Hoffman Jan 2019

Carbon Fiber Monocoque, Dan Brown, Leland Hoffman

Williams Honors College, Honors Research Projects

The University of Akron’s Human Powered Vehicle Team designed a high performing, fully functioning vehicle that is safe, efficient, and practical for the 2018-2019 season. These objectives were the main priorities when it came to the initial stages of designing the vehicle. In addition, the vehicle was designed in accordance with the ASME 2019 Human Powered Vehicle Challenge guidelines to satisfy all the rules and requirements. Additional priorities have been created to teach practical engineering skills and techniques to the students participating in the project through different points in the production process including research, vehicle design, construction, and testing.

The …