Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Mechanical Engineering

Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu Sep 2023

Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Concentrated solar power (CSP) is a reliable renewable energy source that is progressively lowering its cost of energy. However, the heat loss due to reflected and emitted radiation hinders the maximum achievable thermal efficiency for solar receiver tubes on the solar tower. Current solar selective coatings cannot withstand the high temperatures that come with state-of-the-art CSP towers often needing to be recoated soon after initial operation. We intend to use Inconel 718 with different additive manufacturing (AM) practices to construct surfaces that allow for more light-trapping to occur. By adjusting printing parameters, we can tailor a surface to allow for …


Laser-Induced Forward Transfer (Lift) Based Bioprinting Of The Collagen I With Retina Photoreceptor Cells, Md Shakil Arman, Ben Xu, Andrew Tsin, Jianzhi Li Aug 2023

Laser-Induced Forward Transfer (Lift) Based Bioprinting Of The Collagen I With Retina Photoreceptor Cells, Md Shakil Arman, Ben Xu, Andrew Tsin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study focuses on the 3D bioprinting of retina photoreceptor cells using a laser-induced forward transfer (LIFT) based bioprinting system. Bioprinting has a great potential to mimic and regenerate the human organoid system, and the LIFT technique has emerged as an efficient method for high-resolution micropatterning and microfabrication of biomaterials and cells due to its capability of creating precise, controlled microdroplets. In this study, the parameters for an effective femtosecond laser-based LIFT process for 3D bioprinting of collagen biomaterial were studied. Different concentrations of collagen I solutions were tested and 0.75 mg/ml to 1 mg/ml collagen Ⅰ was identified as …


Estudio Termoquímico Asistido Por Computadora De Los Polifenoles Presentes En La Fresa [Thermochemical Computer Assisted Study Of Polyphenols Presented In Strawberry], Federico Lopez, Jeimmy Rocio Bonilla Méndez, Luis Ricárdez Sandoval, Hiram Moya, Daniela Mainardi, Arturo González Quiroga, Jeffrey Leon-Pulido Jul 2023

Estudio Termoquímico Asistido Por Computadora De Los Polifenoles Presentes En La Fresa [Thermochemical Computer Assisted Study Of Polyphenols Presented In Strawberry], Federico Lopez, Jeimmy Rocio Bonilla Méndez, Luis Ricárdez Sandoval, Hiram Moya, Daniela Mainardi, Arturo González Quiroga, Jeffrey Leon-Pulido

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Las fresas son un alimento importante en Latinoamérica debido a sus componentes químicos, puesto que son una considerable fuente de calorías y polifenoles. Estos elementos son útiles por su capacidad antioxidante y otras propiedades beneficiosas para la salud. Sin embargo, la presión y la temperatura pueden llegar a afectar la integridad molecular de estos componentes, por lo tanto, en el proceso de producción de diferentes productos basados en fresas, se requiere estudiar las propiedades termoquímicas de los diferentes polifenoles presentes en esta fruta. Para ello, se extrajeron datos de las principales familias de polifenoles, antocianinas, flavanoles, flavonoles, ácidos hidroxibenzoicos y …


Naphtha Characterization (Piona, Density, Distillation Curve And Sulfur Content): An Origin Comparison, Aline Pioli Silva, Juliana Otavia Bahú, Renato Soccol Jr., Leonardo Rodriguez-Urrego, William Stive Fajardo-Moreno, Hiram Moya, Jeffrey Leon-Pulido, Víktor Oswaldo Cárdenas Concha Apr 2023

Naphtha Characterization (Piona, Density, Distillation Curve And Sulfur Content): An Origin Comparison, Aline Pioli Silva, Juliana Otavia Bahú, Renato Soccol Jr., Leonardo Rodriguez-Urrego, William Stive Fajardo-Moreno, Hiram Moya, Jeffrey Leon-Pulido, Víktor Oswaldo Cárdenas Concha

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Naphtha is an important distillation product of crude oil, and is used as a raw material for first-generation products such as ethylene, propylene, gasoline, xylene (BTX), and others. However, due to the different sources of crude oil, differences in naphtha composition impact the quality of conversion processes. Parameters such as pressure, charge flow, and temperature need to be adjusted for conversion efficiency. This work aims to compare naphtha samples from different origins, through the analysis of distillation curve (ASTM D86), density (ASTM D4052), total sulfur (ASTM D4294), and n-paraffins, iso-paraffins, olefins, naphthene, and aromatics (PIONA, ASTM D5134). Among these parameters …


Study Of The Graphene Energy Absorbing Layer And The Viscosity Of Sodium Alginate In Laser-Induced- Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Jianzhi Li, Ben Xu Feb 2023

Study Of The Graphene Energy Absorbing Layer And The Viscosity Of Sodium Alginate In Laser-Induced- Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Jianzhi Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser induced forward transfer (LIFT) bioprinting has been viewed as a new and actively developed three-dimensional bioprinting technology due to its high accuracy and good cell viability. The printing quality is highly dependent on the jet formation and its stability in the LIFT bioprinting process. The objective of this study is to investigate the effect of a graphene Energy Absorbing Layer (EAL) and alginate hydrogel (SA) (w.t. 1% and 2%) viscosity on jet generation in the LIFT bioprinting process. Since SA exhibits a shear-thinning behavior, it is a non-Newtonian fluid. The effect of EAL thickness and SA’s viscosity were addressed …


A New Course In Defense Manufacturing – An Introduction To Shipbuilding, Alley C. Butler Jan 2023

A New Course In Defense Manufacturing – An Introduction To Shipbuilding, Alley C. Butler

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This paper discusses the development and deployment of a new course in DMEI (Defense Manufacturing Engineering Innovation) titled, “Introduction to Shipbuilding.” This course has been taught using Zoom since 2021 at both the University of Texas Rio Grande Valley, a Hispanic Serving Institution, and Virginia State University, a Historically Black University. After a brief literature review, an outline of the course is presented with topics including the maritime market for shipbuilding, economics of shipbuilding, the classification agencies, metallurgy and welding processes, ship structure and assembly, shipyard layout, accuracy control, and shipbuilding planning and scheduling. Difficulties in obtaining an appropriate textbook …


A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda Oct 2022

A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Defense and aerospace industries usually possess unique high-mix low-volume production characteristics. This uniqueness generally calls for prohibitive production costs and long production lead-time. One of the major trends in advanced, smart manufacturing is to be more responsive and better readiness while ensuring the same or higher production quality and lower cost. This study reviews the state-of-the-art manufacturing technologies to solve these issues and previews two levels of flexibility, i.e., system and process, that could potentially reduce the costs while increasing the production volume in such a scenario. The main contribution of the work includes an assessment of the current solutions …


Ultrafast Laser Direct Writing Of Conductive Patterns On Polyimide Substrate, Ishrat Jahan Biswas, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li Sep 2022

Ultrafast Laser Direct Writing Of Conductive Patterns On Polyimide Substrate, Ishrat Jahan Biswas, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser direct writing (LDW) is a fast and cost-effective method for printing conductive patterns in flexible polymer substrates. The electrical, chemical, and mechanical properties of polyimide (PI) make it an attractive material choice for laser writing of conductive circuits in such polymer. Electrically insulating PI has shown great potential for flexible printed electronics as LDW enables selective carbonization in the bulk of such material leading to the formation of conductive lines. However, existing studies in this area reveal a few key limitations of this approach including limited conductivity of written structures and fragility of carbonized PI. Therefore, more research is …


A Numerical Study On The Powder Flowability, Spreadability, Packing Fraction In Powder Bed Additive Manufacturing, Yeasir Mohammad Akib, Ehsan Marzbanrad, Farid Ahmed, Jianzhi Li Sep 2022

A Numerical Study On The Powder Flowability, Spreadability, Packing Fraction In Powder Bed Additive Manufacturing, Yeasir Mohammad Akib, Ehsan Marzbanrad, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The powder bed fusion (PBF) process is widely adopted in many manufacturing industries because of its capability to 3D print complex parts with micro-scale precision. In PBF process, a thermal energy source is used to selectively fuse powder particles layer by layer to build a part. The build quality in the PBF process primarily depends on the thermal energy deposition and properties of the powder bed. Powder flowability, powder spreading, and packing fraction are key factors that determine the properties of a powder bed. Therefore, the study of these process parameters is essential to better understand the PBF process. In …


Synthesizing And Printing Of Tin Oxide Nanoparticles Using A Single Ultrafast Laser System: A Feasibility Study, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li Sep 2022

Synthesizing And Printing Of Tin Oxide Nanoparticles Using A Single Ultrafast Laser System: A Feasibility Study, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

In laser-based manufacturing, processing setup customization is one of the popular approaches used to enhance diversity in material processing using a single laser. In this study, we propose setup design modification of an ultrafast laser system to demonstrate both Tin Oxide (SnO2) nanoparticle synthesis from bulk metal, and post printing of said nanoparticles using Laser Induced Forward Transfer (LIFT) method. Using the Pulse Laser Ablation in Liquid (PLA-L) method, nanoparticles were synthesized from a bulk tin metal cube submerged in distilled water. Such nanoparticles dispersed in water can form colloidal ink that can be used for different printed electronics applications. …


Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava Sep 2022

Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Carbon Fiber Reinforced Polymer (CFRP) composites have been widely used in aerospace, automotive, nuclear, and biomedical industries due to their high strength-to-weight ratio, corrosion resistance, durability, and excellent thermo-mechanical properties in non-oxidative atmospheres. Machining of CFRP composites has always been a challenge for manufacturers. In this research, a comparative study was performed between the optimal machining parameters of coated and uncoated carbide inserts obtained from the Multi-Objective Genetic Algorithm during turning of CFRP composites. It was found that coated carbide inserts provide lower tool wear and surface roughness, but higher cutting forces compared to those of uncoated carbide inserts …


Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda Sep 2022

Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could …


Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava Sep 2022

Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Inconel 718 is considered difficult to machine because of its ability to maintain its properties at high temperatures. The low thermal conductivity of the alloy causes accelerated tool deterioration when machining. Selective laser melting (SLM) additive manufacturing introduces a possibility of eliminating these difficulties, and producing complex shapes with this difficult-to-machine material. However, high surface roughness and porosity usually occur at the surface of components produced through additive manufacturing. In this study, the surfaces of Inconel 718 samples produced through selective laser melting were treated using laser ablation. The process parameters for the laser ablation process were analyzed in …


Minimax Registration For Point Cloud Alignment, Zhaohui Geng, Mauro Garcia, Bopaya Bidanda Sep 2022

Minimax Registration For Point Cloud Alignment, Zhaohui Geng, Mauro Garcia, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The alignment, or rigid registration, of three-dimensional (3D) point clouds plays an important role in many applications, such as robotics and computer vision. Recently, with the improvement in high precision and automated 3D scanners, the registration algorithm has become critical in a manufacturing setting for tolerance analysis, quality inspection, or reverse engineering purposes. Most of the currently developed registration algorithms focus on aligning the point clouds by minimizing the average squared deviations. However, in manufacturing practices, especially those involving the assembly of multiple parts, an envelope principle is widely used, which is based on minimax criteria. Our present work …


Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen Apr 2022

Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This research presents the effects of carbon nanotori structures (CNst) dispersed as reinforcement for metal-working and metal-forming lubricants. Synthetic (SL) and deep drawing (DD) nanolubricants were prepared following a two-step method at 0.01 wt.%, 0.05 wt.%, and 0.10 wt.% filler fractions. Slight increases in viscosity (<6%) for nanolubricants were observed as filler fraction was increased through various measured temperatures. Tribological behavior of nanolubricants displayed superb improvements under antiwear and extreme pressure conditions. The load carrying capacity (poz) increased by 16% and 22% at merely 0.01 wt.% CNst reinforcement and up to 73% and 107% at 0.10 wt.% filler fraction for SL and DD nanolubricants, respectively, compared to conventional materials. Additionally, at 0.10 wt.% wear scar evaluations showed a highest benefit of 16% and 24%, for SL and DD nanolubricants, …


Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez Mar 2022

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Joints of complex phase 780 (CP-780) advanced high strength steel (AHSS) were carried out by using an ER-CuAl-A2 filler metal for the gas metal arc welding pulsed brazing (GMAW-P- brazing) process and the ER-80S-D2 for the GMAW-P process employing two levels of heat input. The phases in the weld bead and HAZ were analyzed, and the evaporation of zinc by means of scanning electron microscopy (SEM) was also monitored. The mechanical properties of the welded joints were evaluated by tension, microhardness and vertical impact tests. It was found that there was greater surface Zn evaporation in the joints welded with …


State Of Industry 5.0—Analysis And Identification Of Current Research Trends, Aditya Akundi, Daniel Euresti, Sergio Luna, Wilma Ankobiah, Amit Lopes, Immanuel Edinbarough Feb 2022

State Of Industry 5.0—Analysis And Identification Of Current Research Trends, Aditya Akundi, Daniel Euresti, Sergio Luna, Wilma Ankobiah, Amit Lopes, Immanuel Edinbarough

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The term Industry 4.0, coined to be the fourth industrial revolution, refers to a higher level of automation for operational productivity and efficiency by connecting virtual and physical worlds in an industry. With Industry 4.0 being unable to address and meet increased drive of personalization, the term Industry 5.0 was coined for addressing personalized manufacturing and empowering humans in manufacturing processes. The onset of the term Industry 5.0 is observed to have various views of how it is defined and what constitutes the reconciliation between humans and machines. This serves as the motivation of this paper in identifying and analyzing …


Molecular Dynamic Simulation Of Diffusion In The Melt Pool In Laser Additive Alloying Process Of Co-Ni-Cr-Mn-Fe High Entropy Alloy, Mathew Farias, Han Hu, Shanshan Zhang, Jianzhi Li, Ben Xu Jan 2022

Molecular Dynamic Simulation Of Diffusion In The Melt Pool In Laser Additive Alloying Process Of Co-Ni-Cr-Mn-Fe High Entropy Alloy, Mathew Farias, Han Hu, Shanshan Zhang, Jianzhi Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

High entropy alloys (HEAs) can be manufactured in many conventional ways, but it becomes difficult of fabricating heterogeneous materials and structures. Selective Laser Melting (SLM) method generally melts pure elemental powders or prefabricated alloy powders without alloying process. In-situ alloying in SLM, which is also called Laser Additive Alloying (LAA), using pure elemental powders becomes a promising method for creating HEA with heterogeneous structures. However, the effect of the diffusion of elements in the molten pool on the formation of HEA remains unclear. In this paper, the well-discussed Cantor HEA was studied in an in-situ alloying situation, where pure elemental …


Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith Dec 2021

Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith

Manufacturing & Industrial Engineering Faculty Publications and Presentations

A significant increase in System-of-Systems (SoS) is currently observed in the social and technical domains. As a result of the increasing number of constituent system components, Systems of Systems are becoming larger and more complex. Recent research efforts have highlighted the importance of identifying innovative statistical and theoretical approaches for analyzing complex systems to better understand how they work. This paper portrays the use of an agnostic twostage examination structure for complex systems aimed towards developing an information theorybased approach to analyze complex technical and socio-technical systems. Towards the goal of characterizing system complexity with information entropy, work was carried …


Drug-Based Therapeutic Strategies For Covid-19-Infected Patients And Their Challenges, Khatereh Zarkesh, Elaheh Entezar-Almahdi, Parisa Ghasemiyeh, Mohsen Akbarian, Marzieh Bahmani, Shahrzad Roudaki, Rahil Fazlinejad, Soliman Mohammadi-Samani, Negar Firouzabadi, Majid Hosseini, Fatemeh Farjadian Nov 2021

Drug-Based Therapeutic Strategies For Covid-19-Infected Patients And Their Challenges, Khatereh Zarkesh, Elaheh Entezar-Almahdi, Parisa Ghasemiyeh, Mohsen Akbarian, Marzieh Bahmani, Shahrzad Roudaki, Rahil Fazlinejad, Soliman Mohammadi-Samani, Negar Firouzabadi, Majid Hosseini, Fatemeh Farjadian

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Emerging epidemic-prone diseases have introduced numerous health and economic challenges in recent years. Given current knowledge of COVID-19, herd immunity through vaccines alone is unlikely. In addition, vaccination of the global population is an ongoing challenge. Besides, the questions regarding the prevalence and the timing of immunization are still under investigation. Therefore, medical treatment remains essential in the management of COVID-19. Herein, recent advances from beginning observations of COVID-19 outbreak to an understanding of the essential factors contributing to the spread and transmission of COVID-19 and its treatment are reviewed. Furthermore, an in-depth discussion on the epidemiological aspects, clinical symptoms …


A Framework Of Dynamic Data Driven Digital Twin For Complex Engineering Products: The Example Of Aircraft Engine Health Management, Zhenhua Wu, Jianzhi Li Nov 2021

A Framework Of Dynamic Data Driven Digital Twin For Complex Engineering Products: The Example Of Aircraft Engine Health Management, Zhenhua Wu, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. …


Micro Scalable Graphene Oxide Productions Using Controlled Parameters In Bench Reactor, Carolina S. Andrade, Anna Paula Godoy, Marcos Antônio Gimenes Benega, Ricardo J. E. Andrade, Rafael Cardoso Andrade, Wellington Marcos Silva, Josué Marciano De Oliveira Cremonezzi, Waldemar Augusto De Almeida Macedo, Hélio Ribeiro, Jaime Taha-Tijerina Aug 2021

Micro Scalable Graphene Oxide Productions Using Controlled Parameters In Bench Reactor, Carolina S. Andrade, Anna Paula Godoy, Marcos Antônio Gimenes Benega, Ricardo J. E. Andrade, Rafael Cardoso Andrade, Wellington Marcos Silva, Josué Marciano De Oliveira Cremonezzi, Waldemar Augusto De Almeida Macedo, Hélio Ribeiro, Jaime Taha-Tijerina

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The detailed study of graphene oxide (GO) synthesis by changing the graphite/oxidizing reagents mass ratios (mG/mROxi), provided GO nanosheets production with good yield, structural quality, and process savings. Three initial samples containing different amounts of graphite (3.0 g, 4.5 g, and 6.0 g) were produced using a bench reactor under strictly controlled conditions to guarantee the process reproducibility. The produced samples were analyzed by Raman spectroscopy, atomic force microscopy (AFM), x-ray diffraction (XDR), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetry (TGA) techniques. The results showed that the major GO product comprised of nanosheets containing between 1–5 layers, …


Embedded Curriculum With Industry-Recognized Certifications To Improve The Marketability Of Engineering Technology Graduates, Immanuel Edinbarough, Jesus A. Gonzalez-Rodriguez Jul 2021

Embedded Curriculum With Industry-Recognized Certifications To Improve The Marketability Of Engineering Technology Graduates, Immanuel Edinbarough, Jesus A. Gonzalez-Rodriguez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Embedded Curriculum with Industry Recognized Certifications to Improve the Marketability of Engineering Technology Graduates

The Fourth Industrial Revolution is challenging the industries to change the way they manage and operate the manufacturing environment. This leads to the transformation of the world through artificial intelligence, next-generation robotics, automation, big data analytics, 5G technology and Internet of Things. This idea of Industry 4.0 forces the change in the industries of today and tomorrow. In this, cyber physical systems communicate with one another using the Internet of Things. The manufacturing sector takes full advantage of these technologies to produce innovative products to enhance …


Study Of Friction And Wear Effects In Aluminum Parts Manufactured Via Single Point Incremental Forming Process Using Petroleum And Vegetable Oil-Based Lubricants, Jose M. Diabb Zavala, Oscar Martinez-Romero, Alex Elias-Zuniga, Hector Manuel Leija Gutierrez, Alejandro Estrada-De La Vega, Jaime Taha-Tijerina Jul 2021

Study Of Friction And Wear Effects In Aluminum Parts Manufactured Via Single Point Incremental Forming Process Using Petroleum And Vegetable Oil-Based Lubricants, Jose M. Diabb Zavala, Oscar Martinez-Romero, Alex Elias-Zuniga, Hector Manuel Leija Gutierrez, Alejandro Estrada-De La Vega, Jaime Taha-Tijerina

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This paper focuses on studying how mineral oil, sunflower, soybean, and corn lubricants influence friction and wear effects during the manufacturing of aluminum parts via the single point incremental forming (SPIF) process. To identify how friction, surface roughness, and wear change during the SPIF of aluminum parts, Stribeck curves were plotted as a function of the SPIF process parameters such as vertical step size, wall angle, and tool tip semi-spherical diameter. Furthermore, lubricant effects on the surface of the formed parts are examined by energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) images, the Alicona optical 3D measurement system, …


Printing Quality Improvement For Laser-Induced Forward Transfer Bioprinting: Numerical Modeling And Experimental Validation, Jie Qu, Chaoran Dou, Ben Xu, Jianzhi Li, Zhonghao Rao, Andrew Tsin Jul 2021

Printing Quality Improvement For Laser-Induced Forward Transfer Bioprinting: Numerical Modeling And Experimental Validation, Jie Qu, Chaoran Dou, Ben Xu, Jianzhi Li, Zhonghao Rao, Andrew Tsin

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser-induced-forward-transfer (LIFT)-based laser assisted bioprinting (LAB) has great advantages over other three-dimensional (3D) bioprinting techniques, such as none-contact, free of clogging, high precision, and good compatibility. In a typical LIFT based LAB process, a jet flow transfers the bioink from the ribbon to the substrate due to bioink bubble generation and collapse, and the printing quality is highly dependent on the jet flow regime (stable or unstable), so it is a great challenge to understand the connection between the jet flow and the printing outcomes. To tackle this challenge, a novel computational-fluid-dynamics (CFD)-based model was developed in this study to …


A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li Jun 2021

A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Bioprinting is an additive manufacturing technology with great potential in medical applications. Among available bioprinting techniques, laser-assisted bioprinting (LAB) is a promising technique due to its high resolution, high cell viability, and the capability to deposit high-viscousity bioink. These characteristics allow the LAB technology to control cells precisely to reconstruct living organs. Recent developments of LAB technologies are reviewed in this paper, covering various designs of LAB printers, research progresses in energy-absorbing layer (EAL), the physical phenomenon that triggers the printing process in terms of bubble formation and jet development, printing process parameters, and major factors related to the post-printing …


Carbon Nanotori Structures For Thermal Transport Applications On Lubricants, Jaime Taha-Tijerina, Karla Aviña, Juan Manuel Martínez, Patsy Yessenia Arquieta-Guillén, Marlon González-Escobedo Apr 2021

Carbon Nanotori Structures For Thermal Transport Applications On Lubricants, Jaime Taha-Tijerina, Karla Aviña, Juan Manuel Martínez, Patsy Yessenia Arquieta-Guillén, Marlon González-Escobedo

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Carbon nanostructures have been recently applied to improve industrial manufacturing processes and other materials; such is the case for lubricants used in the metal-mechanic industry. Nanotori are toroidal carbon nanostructures, obtained from chemical treatment of multi-wall carbon nanotubes (MWCNTs). This material has been shown to have superb anti-wear and friction reduction performance, having the ability to homogeneously disperse within water in concentrations between 1-2 wt.%. Obtained results of these novel nanostructures under water mixtures and novel additives were a set point to our studies in different industrial lubricants. In the present work, nanotori structures have been applied in various filler …


El Español En Estados Unidos Como Recurso Para La Educación De Hispanos En Ingeniería, Hiram Moya Jan 2021

El Español En Estados Unidos Como Recurso Para La Educación De Hispanos En Ingeniería, Hiram Moya

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Los Hispanos representan la más grande minoría en Estados Unidos. Sin embargo, el número de estudiantes hispanos en las carreras de ciencias y en particular en ingeniería ha estado subrepresentada por muchos años. Esta falta de representación ha hecho que se estudie de muchas formas los métodos de reclutar y retener y graduar estudiantes hispanos en ingeniería. Sin embargo, la urgencia continúa. Existen muchos retos para mejorar la participación de hispanos en ingeniería, incluyendo la falta costumbre en preguntar o solicitar ayuda, los retos económicos, y la falta de ejemplos a seguir en la facultad. Dado los retos, este artículo …


Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li Jan 2021

Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various process conditions in SLM, such as laser power, point distance and laser exposure time, on the microstructures formed. The as-built samples under high, medium and low energy densities were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that five major crystal structure phases (hexagonal, monoclinic, orthorhombic, body-centered cubic …


Potential Production Of Theranostic Boron Nitride Nanotubes (64cu-Bnnts) Radiolabeled By Neutron Capture, Wellington Marcos Silva, Helio Ribeiro, Jaime Taha-Tijerina Jan 2021

Potential Production Of Theranostic Boron Nitride Nanotubes (64cu-Bnnts) Radiolabeled By Neutron Capture, Wellington Marcos Silva, Helio Ribeiro, Jaime Taha-Tijerina

Manufacturing & Industrial Engineering Faculty Publications and Presentations

In this work, the radioisotope 64Cu was obtained from copper (II) chloride dihydrate in a nuclear research reactor by neutron capture, (63Cu(n, )64Cu), and incorporated into boron nitride nanotubes (BNNTs) using a solvothermal process. The produced 64Cu-BNNTs were analyzed by TEM, MEV, FTIR, XDR, XPS and gamma spectrometry, with which it was possible to observe the formation of64Cu nanoparticles, with sizes of up to 16 nm, distributed through nanotubes. The synthesized of 64Cu nanostructures showed a pure photoemission peak of 511 keV, which is characteristic of gamma radiation. This type of emission is desirable for Photon Emission Tomography (PET scan) …