Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Glucose oxidase

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield Jan 2011

Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield

Jonathan C. Claussen

Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result …