Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

A Paper Based Graphene-Nanocauliflower Hybrid Composite For Point Of Care Biosensing, S. L. Burrs, R. Sidhu, M. Bhargava, J. Kieman-Lewis, N. Schwalb, Y. Rong, Carmen Gomes, Jonathan C. Claussen, D. C. Vanegas, E. S. Mclamore May 2016

A Paper Based Graphene-Nanocauliflower Hybrid Composite For Point Of Care Biosensing, S. L. Burrs, R. Sidhu, M. Bhargava, J. Kieman-Lewis, N. Schwalb, Y. Rong, Carmen Gomes, Jonathan C. Claussen, D. C. Vanegas, E. S. Mclamore

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was ...


Development Of An Enzymatic Glucose Biosensor For Applications In Wearable Sweat-Based Sensing, Allison Anne Cargill Jan 2016

Development Of An Enzymatic Glucose Biosensor For Applications In Wearable Sweat-Based Sensing, Allison Anne Cargill

Graduate Theses and Dissertations

The recent development and commercial availability of wearable devices like the FITBIT® and Apple Watch® reflect an increasing consumer interest in actively monitoring health parameters. Though wearable devices are beginning to emerge in a variety of fields and applications, there is particular interest in the development of wearable monitors for continuously sensing blood glucose levels. Diabetes currently affects nearly 10% of the American population, a number that is expected to rise in the near future, prompting increased interest in noninvasive methods of monitoring glucose levels. This interest in noninvasive monitoring and the recent advent of continuous monitoring products ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jan 2016

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jan 2016

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Fiber Based Approaches As Medicine Delivery Systems, Farrokh Sharifi, Avinash C. Sooriyarachchi, Hayriye Altural, Reza Montazami, Marissa Nichole Rylander, Nicole Nastaran Hashemi Jan 2016

Fiber Based Approaches As Medicine Delivery Systems, Farrokh Sharifi, Avinash C. Sooriyarachchi, Hayriye Altural, Reza Montazami, Marissa Nichole Rylander, Nicole Nastaran Hashemi

Mechanical Engineering Publications

The goal of drug delivery is to ensure that therapeutic molecules reach the intended target organ or tissue, such that the effectiveness of the drug is maximized. The efficiency of a drug delivery system greatly depends on the choice of drug carrier. Recently, there has been growing interest in using micro- and nanofibers for this purpose. The reasons for this growing interest include these materials’ high surface area to volume ratios, ease of fabrication, high mechanical properties, and desirable drug release profile. Here, we review developments in using these materials made by the most prevalent methods of fiber fabrication: electrospinning ...