Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 109

Full-Text Articles in Mechanical Engineering

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to ...


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a ...


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric ...


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs ...


Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman Apr 2019

Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman

GSBS Dissertations and Theses

Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation.

A universal standard makes it easier to assess ...


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the ...


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe Jan 2019

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the ...


Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella Jan 2019

Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella

Graduate Theses and Dissertations

Additive manufacturing techniques like 3D printing are being used extensively to produce custom-designed products in all walks of life- from household items to human organs to space shuttle parts. However, most additive manufacturing platforms use single materials or use extremely complicated processes to print multi-material products. Also, the microstructure of the materials cannot be controlled in many cases. The 3D printing sector is a USD 7 Billion market and is expected to grow at a rate of 25% per annum. At this rate of development, the use of printing multi-material components and creating programmable material structures will be crucial for ...


Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi Jan 2019

Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi

Theses and Dissertations

The differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. Designing the DMC requires knowledge of the geometrical and constructional imperfection (or tolerance). Studying the effects of geometrical imperfection on the performance of the DMC is necessary to provide manufacturing tolerance and it helps to predict the performance of geometrically imperfect classifiers, as well as providing a calibration curve for the DMC. This thesis was accomplished via studying the cylindrical classifier and the parallel plate classifier. The numerical model was built using the most recent versions of COMSOL Multiphysics® and ...


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the envelope in pairing ...


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high ...


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti Jul 2018

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from ...


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation ...


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another ...


Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder May 2018

Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder

Theses and Dissertations

Bone is a composite biomaterial with a structural load-bearing function. Understanding the biomechanics of bone is important for characterizing factors such as age, trauma, or disease, and in the development of scaffolds for tissue engineering and bioinspired materials. At the nanoscale, bone is primarily composed of collagen protein, apatite crystals, and water. Though several studies have characterized nanoscale bone mechanics as the mineral content changes, the effect of water, mineral, and carbon nanotube (CNT) content and distribution in fibril gap and overlap regions is unexplored. This study used molecular dynamics to investigate the change in collagen fibril deformation mechanisms as ...


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert May 2018

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition ...


Interface Energy Transport Of Two-Dimensional (2d) Mos2, Pengyu Yuan Jan 2018

Interface Energy Transport Of Two-Dimensional (2d) Mos2, Pengyu Yuan

Graduate Theses and Dissertations

The bottleneck of most modern technologies and energy solutions has been attributed to the thermal problems at the nanoscale. Especially, the thermal transport across interfaces and in-plane direction can significantly influence the overall performance of 2D nanosystems. So accurate thermal-physical characterization of the 2D materials is very important for both fundamental research and industrial applications.

Focusing on 2D mechanically exfoliated MoS2, at first, we conduct a detailed temperature and laser power dependent micro-Raman spectroscopy study of FL MoS2 (4.2 to 45 nm thick) on c-Si substrate. We measured the interfacial thermal resistance (R) at room temperature decreases with increased ...


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes ...


Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee Nov 2017

Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee

Mechanical Engineering Research Theses and Dissertations

Solid‐state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired ...


The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli Nov 2017

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies.

Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We ...


Metal Sulfides As Anode For Lithium Ion And Sodium Ion Battery, Ali Abdulla Oct 2017

Metal Sulfides As Anode For Lithium Ion And Sodium Ion Battery, Ali Abdulla

Electronic Thesis and Dissertation Repository

Abstract

Nanomaterials have been studied intensively in the last decades due to their unique physical and chemical properties and their potential for applications in different domains. Among these applications, energy storage has become the center of focus by many research groups and companies to develop high efficiency and reliable energy devices such as the commercial lithium ion batteries (LIBs). However, LIBs has not yet met the growing requirements of the high demand for increasing energy density. More efforts are requested to improve the performance of the batteries by designing better electrode materials and increasing the battery safety. Another type of ...


Deformation Behavior Of Al/A-Si Core-Shell Nanostructures, Robert Andrew Fleming Aug 2017

Deformation Behavior Of Al/A-Si Core-Shell Nanostructures, Robert Andrew Fleming

Theses and Dissertations

Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either ...


Enhanced Visible Light Photocatalytic Remediation Of Organics In Water Using Zinc Oxide And Titanium Oxide Nanostructures, Srikanth Gunti Jun 2017

Enhanced Visible Light Photocatalytic Remediation Of Organics In Water Using Zinc Oxide And Titanium Oxide Nanostructures, Srikanth Gunti

Graduate Theses and Dissertations

The techniques mostly used to decontaminate air as well as water pollutants have drawbacks in terms of higher costs, require secondary treatment, and some methods are very slow. So, emphasis has been given to water though the use of photocatalysts, which break organic pollutants to water and carbon dioxide and leave no trace of by-products at the end. Photocatalytic remediation aligns with the waste and wastewater industries’ zero waste schemes with lower cost, eco-friendly and sustainable treatment technology. The commonly used photocatalysts such as titanium oxide (TiO2), zinc oxide (ZnO), tungsten oxide (WO3) have band gap of nearly ...


Nanoscale Investigations Of Thermal And Momentum Transport In Graphene – Water Systems, Drew Champion Marable May 2017

Nanoscale Investigations Of Thermal And Momentum Transport In Graphene – Water Systems, Drew Champion Marable

Masters Theses

Demand for miniaturized electronic devices has given rise to new challenges in thermal management. Integration with graphene, a two-dimensional (2D) material with excellent thermal properties, allows for further reduced sizes and combats thermal management issues within novel devices. Moreover, due to its wide availability and adequate thermal properties, liquid water is commonly used within traditional thermal systems to enhance cooling performance; as such, water is expected to yield similar performance in smaller-scale applications. However, at reduced sizes descending to the nanoscale realm, system behaviors deviate from traditional macroscale-based theory as interfacial effects become amplified. Employing insight provided by molecular dynamics ...


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect ...


Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle Jan 2017

Nanotextured Titanium Surfaces For Implants: Manufacturing And Packaging Aspects, Sachin Bhosle

Dissertations, Master's Theses and Master's Reports

It has been shown that nanotexturing the surface of otherwise smooth titanium orthopedic materials increases osteoblast proliferation in vitro, and the bone-implant contact area and pullout force in vivo. However, this prior work has not focused on the requirements for scale-up to industrial processes. This dissertation reports on titanium surface modifications by electrochemical anodization using a benign NH4F electrolyte, and a hybrid electrolyte also containing AgF, rather than hazardous hydrofluoric acid used elsewhere. Nanotube fabrication of Ti6Al4V foils, rods, thermal plasma sprayed commercial implants, and laser and e-beam melted powder materials was demonstrated.

It was found that the ...


Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates, Ryan D. Scherzer Jan 2017

Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates, Ryan D. Scherzer

UNF Graduate Theses and Dissertations

Raman spectroscopy is employed by NASA, and many others, to detect trace amounts of substances. Unfortunately, the Raman signal is generally too weak to detect when very small, but non-trivial, amounts of molecules are present. One way around this weak signal is to use surface enhanced Raman spectroscopy (SERS).

When used as substrates for SERS, metallic nanorods grown using physical vapor deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012. However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation as a function of time and exposure to harsh environment. Exposure ...


Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson Dec 2016

Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson

Open Access Dissertations

The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was ...