Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Selected Works

Hydrogen peroxide

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Jun 2017

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Jonathan C. Claussen

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen Mar 2017

Platinum Nanoparticle Decorated Sio2 Microfibers As Catalysts For Micro Unmanned Underwater Vehicle Propulsion, Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, Eric Mootz, Allison Cargill, Anne Leners, Granit Vokshi, Jacob Davis, Wyatt Burns, Michael A. Daniele, Josh Kogot, Igor L. Medintz, Jonathan C. Claussen

Jonathan C. Claussen

Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts ...


High Aspect Ratio Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2o2 Decomposition, Kevin Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen Sep 2015

High Aspect Ratio Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2o2 Decomposition, Kevin Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen

Jonathan C. Claussen

The utility of unmanned micro underwater vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. Herein we develop high-aspect ratio (150:1), multiwalled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 μm) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation energy of 26 ...