Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Selected Works

Center for Bio/Molecular Science and Engineering

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz Dec 2014

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began ...


Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Dec 2013

Complex Logic Functions Implemented With Quantum Dot Bionanophotonic Circuits, Jonathan C. Claussen, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad ...


Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Dec 2012

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal ...