Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Selected Works

Carbon nanotubes

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen Apr 2018

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen

Jonathan C. Claussen

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered much attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDE is functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)—a salivary oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant immunosensor is capable ...


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Dec 2013

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time ...


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same ...


A Self Referencing Platinum Nanoparticle Decorated Enzyme-Based Microbiosensor For Real Time Measurement Of Physiological Glucose Transport, Eric S. Mclamore, J. Shi, D. Jaroch, Jonathan C. Claussen, A. Uchida, Y. Jiang, Y. Zhang, S. S. Donkin, M. K. Banks, K. K. Buhman, D. Teegarden, Jenna L. Rickus, D. Marshall Porterfield Dec 2010

A Self Referencing Platinum Nanoparticle Decorated Enzyme-Based Microbiosensor For Real Time Measurement Of Physiological Glucose Transport, Eric S. Mclamore, J. Shi, D. Jaroch, Jonathan C. Claussen, A. Uchida, Y. Jiang, Y. Zhang, S. S. Donkin, M. K. Banks, K. K. Buhman, D. Teegarden, Jenna L. Rickus, D. Marshall Porterfield

Jonathan C. Claussen

Glucose is the central molecule in many biochemical pathways, and numerous approaches have
been developed for fabricating micro biosensors designed to measure glucose concentration in/
near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a
low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic
activity of cells. A microsensor technique designed to filter extraneous electrical noise and provide
direct quantification of active membrane transport is known as self-referencing. Self-referencing
involves oscillation of a single microsensor via computer-controlled stepper motors within a stable
gradient formed near cells/tissues (i.e ...


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The ...


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same ...