Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar Jan 2013

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar

Mechanical Engineering Faculty Research

Nanoparticles with sizesscintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.


Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam Jan 2013

Transparent Actuator Made With Few Layer Graphene Electrode And Dielectric Elastomer, For Variable Focus Lens, Taeseon Hwang, Hyeok-Yong Kwon, Joon-Suk Oh, Jung-Pyo Hong, Seung-Chul Hong, Youngkwan Lee, Hyouk Ryeo Choi, Kwang J. Kim, Mainul Hossain Bhuiya, Jae Do Nam

Mechanical Engineering Faculty Research

A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed inN-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes.The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in …


Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao Jan 2011

Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao

Mechanical Engineering Faculty Research

The streaming potential generated by a pressure-driven flow over a weakly charged slip-stick surface [the zeta potential of the surface is smaller than the thermal potential (25 mV)] with an arbitrary double layer thickness is theoretically studied by solving the Debye–Huckel equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also given in excellent agreement with the full solution. To understand the impact of the slip, the streaming potential is compared against that over a homogeneously charged smooth …


On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao Jan 2010

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the …


Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula May 2009

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nanoporous anodic aluminum oxide has traditionally been made in one of two ways: "Mild Anodization (MA)" or "Hard Anodization (HA)". The former method produces self-ordered pore structures but it is slow and only works for a narrow range of processing conditions; the latter method, which is widely used in the aluminum industry, is faster but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the MA and HA processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic …


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Research

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge …


A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh Jan 2008

A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh

Mechanical Engineering Faculty Research

A new method for preparing black birnessite nanoparticles is introduced. The initial synthesis process resembles the classical McKenzie method of preparing brown birnessite except for slower cooling and closing the system from the ambient air. Subsequent process, including wet-aging at 7◦C for 48 hours, overnight freezing, and lyophilization, is shown to convert the brown birnessite into black birnessite with complex nanomorphology with folded sheets and spirals. Characterization of the product is performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), and N2 adsorption (BET) techniques. Wet-aging and lyophilization times are shown to …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …