Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Evaluation Of A Novel Finite Element Model Of Active Contraction In The Heart, Xiaoyan Zhang, Zhan-Qiu Liu, Kenneth S. Campbell, Jonathan F. Wenk Apr 2018

Evaluation Of A Novel Finite Element Model Of Active Contraction In The Heart, Xiaoyan Zhang, Zhan-Qiu Liu, Kenneth S. Campbell, Jonathan F. Wenk

Mechanical Engineering Faculty Publications

Finite element (FE) modeling is becoming a widely used approach for the investigation of global heart function. In the present study, a novel model of cellular-level systolic contraction, which includes both length- and velocity-dependence, was implemented into a 3D non-linear FE code. To validate this new FE implementation, an optimization procedure was used to determine the contractile parameters, associated with sarcomeric function, by comparing FE-predicted pressure and strain to experimental measures collected with magnetic resonance imaging and catheterization in the ventricles of five healthy rats. The pressure-volume relationship generated by the FE models matched well with the experimental data. Additionally, …


Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton Jan 2014

Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton

Christine M Buffinton

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology …


Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton Dec 2012

Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton

Faculty Journal Articles

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology …