Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu Jan 2018

Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In-stent restenosis after stent deployment remains an obstruction in the long-term benefits of stenting. This study sought to investigate the influence of the relation between stent length and lesion length on the mechanics of the arterial wall with different geometries, including straight and tapered vessels. Results showed that when the length of the stent was longer than the lesion length, the maximum stress in plaque and vessel increased as the length of stent increased. When the length of the stent was shorter than the lesion length, the vessel stress induced by stent inflation was lower; both ends of the stenosis …


Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia Dec 2016

Finite Element Simulation And Additive Manufacturing Of Stiffness-Matched Niti Fixation Hardware For Mandibular Reconstruction Surgery, Ahmadreza Jahadakbar, Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, David Dean, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, …


Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton Jan 2014

Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton

Christine M Buffinton

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology …


Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton Dec 2012

Stress And Strain Adaptation In Load-Dependent Remodeling Of The Embryonic Left Ventricle, Christine Buffinton

Faculty Journal Articles

Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology …