Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Mechanical Engineering

Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar Nov 2023

Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar

Electronic Thesis and Dissertation Repository

This study focuses on supporting the development of safety regulations for vulnerable populations during drone to head impacts. First, the small female head and neck model was compared to cadaveric data. Then, combined with lab’s previous work, gender-based disparities in head impact responses were highlighted, with small females experiencing higher injury risk metrics, despite lower skull von Mises stress. Beyond small females, children of various ages and their head responses during impacts were also analyzed. In addition to the previously developed quadcopter drone model, a new Mavic Pro drone model was developed, and this model was integrated with human head …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao Aug 2021

Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao

Electronic Thesis and Dissertation Repository

All-solid-state lithium batteries (ASSLBs) have become increasingly attractive due to the demand of high-energy-density and high-safety lithium-ion batteries for electric vehicles (EVs). As the core component of ASSLBs, solid-state electrolytes (SSEs) are regarded as essential to determine the electrochemical performance of ASSLBs. The inorganic SSEs is one of the most important categories in all developed SSEs, representing the advance of superionic lithium conductors as well as the cornerstone to construct flexible polymer/inorganic composite SSEs. The sulfide-based inorganic SSE is one of the most promising SSEs that is receiving a lot of attentions, because only sulfide SSEs can show ultrahigh ionic …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Material Property Characterization For Elastomers Within The Framework Of Finite-Deformation Viscoelasticity, Shan Gao Jun 2021

Material Property Characterization For Elastomers Within The Framework Of Finite-Deformation Viscoelasticity, Shan Gao

Electronic Thesis and Dissertation Repository

Elastomers are polymeric materials that consist of highly mobile long-molecule chains jointed together through crosslinking. The behavior of elastomers is commonly manifested by hyperelasticity and viscosity due to their molecular structure. Any variation of the material microstructure may have an impact on the macroscopic properties of elastomers. Therefore, characterizing the material properties of elastomers with appropriate constitutive models is essential to facilitating their potential applications. Although various constitutive models have been developed to describe the hyperelastic and viscoelastic behaviors of elastomers, it is still challenging to quantify the material properties of elastomers since there exist restrictions and limitations of the …


Evaluation Of Warpage For Composite Automotive Components, Eric J. Martin Oct 2020

Evaluation Of Warpage For Composite Automotive Components, Eric J. Martin

Electronic Thesis and Dissertation Repository

Thermoplastic composite parts are manufactured using compression molding for the purposes of assembly in a car seat sub-assembly. Concerns about the dimensional accuracy of the parts prompted an investigation into the part warpage. The warpage of the parts needs to be evaluated for the purposes of determining processing conditions which are linked to part warpage, in order to reduce part warpage.

Laser line probes (LLP) are becoming a more attractive tool for the purposes of part inspection. LLPs quickly acquire point cloud data from complex surfaces and are a non-contact method of measurement; these qualities make LLPs the best tool …


Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick Dec 2019

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick

Electronic Thesis and Dissertation Repository

The all-solid-state-battery (ASSB) serves as a promising candidate for next generation lithium ion batteries for significant improvements in battery safety, capacity, and longevity. Of the material candidates researched to replace the conventionally used liquid electrolyte, the garnet oxide Ta-LLZO (Li6.4La3Zr1.4Ta0.6O12) has received much attention thanks to its high chemical and electrochemical stability, and ionic conductivity which rivals that of liquid electrolytes. While much investigation has taken place regarding the electrochemical performance of Ta-LLZO, much less is known about the micromechanics, including microstructural characterization, stress and strain development, and material failure …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


3d Printing Of Functional Materials: Surface Technology And Structural Optimization, Dongxing Zhang Sep 2017

3d Printing Of Functional Materials: Surface Technology And Structural Optimization, Dongxing Zhang

Electronic Thesis and Dissertation Repository

There has been a surge in interest of 3D printing technology in the recent 5 years with respect to the equipment and materials, because this technology allows one to create sophisticated and customized parts in a manner that is more efficient regarding both material and time consumption. However, 3D printing has not yet become a mainstream technology within the established manufacturing routes. One primary factor accounting for this slow progress is the lack of a broad variety of 3D printable materials, resulting in limited functions of 3D printed parts.

To bridge this gap, I present an integrated strategy to fabricate …


Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness Aug 2017

Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness

Electronic Thesis and Dissertation Repository

Electroactive polymers exhibit a change in properties, typically size or shape, in response to electrical stimuli. One class of electroactive polymer of particular interest are the conjugated polymers, whose conjugated backbone structure imparts electrical conductivity. However, this structure imposes processing limitations restricting their form to 2D structures. To overcome this, we develop specially formulated polyaniline- based blends via counter-ion induced thermal doping for the fabrication of 3D conductive structures via direct ink writing. This approach employs multi-material extrusion for the production of structures with passive and active features, rapid device fabrication, and improved design freedom. A model of the thermal …


Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green Sep 2016

Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green

Electronic Thesis and Dissertation Repository

Mechanically flexible large area polydimethylsiloxane (PDMS) optical devices are fabricated using soft-lithography techniques based on replica moulding. These non-rigid optical devices can be designed as sheets to act as either light concentrators (collectors) or diffusers (illuminators) based on the position and geometry of micro-optical structures (MOSs) embedded within the sheet or imprinted on its surface. The active surface area of the device can range from less than a sq. cm to several sq. m. The performance of the large area optical device is a function of the location and geometry of micro-optical structures, thickness and shape of the flexible waveguide, …


Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang Sep 2016

Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang

Electronic Thesis and Dissertation Repository

The fracture toughness resistance curve, i.e. the J-integral resistance curve (J-R curve) or the crack tip opening displacement resistance (CTOD-R) curves, is widely used in the integrity assessment and strain-based design of energy pipelines with respect to planar defects (i.e. cracks). This thesis deals with issues related to the experimental determination of the J(CTOD)-R curves using the newly-developed single-edge (notched) tension (SE(T)) specimens. In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate J in a J-R curve test based on …


The Effect Of Cutting Blade Geometry And Material On Carbon Fiber Severing As Used In High-Volume Production Of Composites, Michael Francis Anthony Adamovsky Apr 2015

The Effect Of Cutting Blade Geometry And Material On Carbon Fiber Severing As Used In High-Volume Production Of Composites, Michael Francis Anthony Adamovsky

Electronic Thesis and Dissertation Repository

Automotive manufacturers have started to actively look into weight savings options for mass production of vehicles that meet new government regulations. Falling prices of carbon fibers have made carbon fiber composites a promising material to be used. The study has focused on the fiber-severing unit incorporated in a high-volume composite production line in an attempt to better define the impact of blade geometry and material on the wear as experienced while cutting carbon fiber. A method to quantify the effect of usage on the cutting ability of a blade has been developed, as well as methods to measure blade wear. …


Characterization Of High-Pressure-Die-Cast Magnesium Alloy Am60, Hooman Baghaei Anaraki Mar 2015

Characterization Of High-Pressure-Die-Cast Magnesium Alloy Am60, Hooman Baghaei Anaraki

Electronic Thesis and Dissertation Repository

The primary goal of this study is the characterization of high pressure die cast magnesium alloys AM60 so that the failure model which is proposed by J.Weiler can be validated for two new castings. The input variables of failure model can be determined by characterization of different regions within the castings. Based on the location of gate system, the desired regions are identified across both castings and tensile specimens are extracted from various regions. Therefore the local mechanical properties are determined, and fracture strain of samples ranges from 1.2 to 9.5%. The area fraction of porosities and skin fraction of …


Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi Aug 2014

Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi

Electronic Thesis and Dissertation Repository

Plasma Electrolytic Oxidation (PEO) is a surface treatment for the production of ceramic oxide coatings with great properties, such as high wear and corrosion resistance, on metal substrates, particularly aluminum and magnesium alloys. Formation of PEO coatings involves complex processes and mechanisms that are difficult to study. Currently, the PEO process is in a transition phase from research to commercial application, with a primary focus on the corrosion and wear protection of light alloys, and has recently generated interest as a promising surface treatment for biomedical applications.

To justify the industrial application of PEO, a more systematic and in-depth study …


Mechanistic Failure Criterion For Unidirectional And Random Fibre Polymer Composites, Jamaloddin Jamali Jun 2014

Mechanistic Failure Criterion For Unidirectional And Random Fibre Polymer Composites, Jamaloddin Jamali

Electronic Thesis and Dissertation Repository

Polymer composite design in energy absorbing components requires a failure criterion that can predict the energy involved in its fracture under different modes of loading. Present mixed mode criteria are mainly empirical or semi-empirical, and are only suitable for a small range of composite types.

The purpose of this study was to develop a mechanistic failure criterion that is applicable to a wide range of polymer composites. An energy based mechanistic failure criterion is proposed to characterize the toughness of unidirectional (UD) and randomly oriented short fibre composites (random fibre composites).

In UD and random composites, the criterion predicts the …


Finite Element Analyses Of Single-Edge Bend Specimens For J-R Curve Development, Yifan Huang Sep 2013

Finite Element Analyses Of Single-Edge Bend Specimens For J-R Curve Development, Yifan Huang

Electronic Thesis and Dissertation Repository

The fracture toughness resistance curve such as the J-integral resistance curve (J-R curve) is widely used in the integrity assessment and strain-based design of energy pipelines with respect to planar defects (i.e. cracks). Two studies about the development of the J-R curve are carried out and reported in this thesis. In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate J in a J-R curve test based on the single-edge bend (SE(B)) specimen is developed based on the three-dimensional (3D) finite element analysis (FEA). The main …


Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad Aug 2013

Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad

Electronic Thesis and Dissertation Repository

A formulation used to simulate the solidification process of magnesium alloys is developed based upon the volume averaged finite volume method on unstructured collocated grids. To derive equations, a non-zero volume fraction gradient has been considered and resulting additional terms are well reasoned. For discretization the most modern approximations for gradient and hessians are used and novelties outlined. Structure-properties correlations are incorporated into the in-house code and the proposed formulation is tested for a wedge-shaped magnesium alloy casting. While the results of this study show a good agreement with the experimental data, it was concluded that a better understanding of …


Process-Structure Relationships Of Magnesium Alloys, Arindam Banerjee Apr 2013

Process-Structure Relationships Of Magnesium Alloys, Arindam Banerjee

Electronic Thesis and Dissertation Repository

This research study characterizes the effects of solidification conditions on the resulting microstructure of an AM60B magnesium alloy during the solidification cycle of the casting. Seventeen control points are chosen from different sections of an instrument panel beam casting and its centerline coordinates are located. These control points locations are then used by Meridian Lightweight Technology Inc. to run a simulation in a MAGMASoft casting software to obtain temperature-time specific data.

An exact analytical solution to the Stefan problem is used to compute the one dimensional heat transfer for a section of the casting and to calculate its temperature distribution …


Micro-Mechanical Assessment Of The Local Plastic Strain Invoked During A Splined Mandrel Flow Forming Operation, Meysam Haghshenas Apr 2013

Micro-Mechanical Assessment Of The Local Plastic Strain Invoked During A Splined Mandrel Flow Forming Operation, Meysam Haghshenas

Electronic Thesis and Dissertation Repository

Splined Mandrel Flow Forming (SMFF) is a metal spinning operation that involves the application of high multiaxial compressive stress states to invoke large plastic flow in the work piece. This allows for essentially one-step fabrication of complex internally-splined shapes. In this research project, the equivalent plastic strain, invoked throughout bcc (1020 steel) and fcc (5052 and 6061 aluminum alloys, pure copper, and 70/30 brass) samples, that were made by SMFF, was measured. The objective of the research were to measure the to obtain data on the effect of microstructure and mechanical parameters on the flow formability of ductile bcc and …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Investigation Of The Use Of Micro-Mechanical Testing To Analyze The Mechanical Anisotropy Of The Zr-2.5%Nb Pressure Tube Alloy, Richard O. Oviasuyi Apr 2012

Investigation Of The Use Of Micro-Mechanical Testing To Analyze The Mechanical Anisotropy Of The Zr-2.5%Nb Pressure Tube Alloy, Richard O. Oviasuyi

Electronic Thesis and Dissertation Repository

Maintaining a safe operation of nuclear power plants is the primary requirement of nuclear power generating organizations worldwide. This necessitates the use of highly effective methods for assessing the mechanical properties of reactor materials and components. This is important since all components located in a nuclear reactor core experience high levels of neutron irradiation which cause defects to be formed in the metals’ crystal structure. The density of these crystal defects increases with increasing exposure to neutrons and cause the crystalline metal to become harder and simultaneously more brittle. This change in mechanical properties is potentially detrimental to the safe …