Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Applied sciences

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance May 2017

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance

Graduate Theses and Dissertations

A phase-field simulation model is being presented that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. In addition, the model also captures changes in a migrating pores’ morphology. Simulations demonstrate that the model successfully predicts pore migration towards the hottest portion of the fuel, the centerline. The simulations also demonstrate changes in pore shape that are in agreement with previous experimental observations. Initially isotropic pores are …


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani May 2017

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Graduate Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind the shock wave …


Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni Jul 2015

Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni

Graduate Theses and Dissertations

The influence of transient factors such as sky long wave radiation exchange and atmospheric aerosols (i.e., smog, and dust – made up of sand, clay, and silt) are not carefully considered in current building design and simulation models. Therefore, the research objective was to better understand and account for such variables, resulting in improved radiative predictive capabilities, especially important for hot and dry climates under different sky conditions including clean, cloudy, and dusty. Overall, results of this dissertation provided a better prediction method for sky long wave radiation exchange with a building’s roof and the impact of dust accumulation on …


Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead May 2015

Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead

Graduate Theses and Dissertations

As the expectations for modern machinery's tribological and thermal performances continue to rise, the retention of lubricant on the contact surfaces of their sliding components becomes an increasingly important issue. Friction and wear cause heat-related failures which lead to catastrophic damage to machinery. Evaporation of a lubricant's volatile constituents as well as lubricant migration leads not only to a reduction in lubricant quantity but also in its quality, thus facilitating component failures. In order to enhance component reliability, the surface should incorporate features that actively retain lubricants. The unique properties of nano-porous topographies such as their high surface area-to-volume ratio …


Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long Dec 2012

Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long

Graduate Theses and Dissertations

In recent years, nanoparticles have received considerable attention as a potential additive to heat transfer fluids (i.e. refrigerant) in order to increase the heat transfer capabilities of these fluids. The potential of carbon nanotubes (CNTs) to exit the compressor, migrate throughout a vapor compression air conditioning system, and possibly foul the components of such a system was experimentally investigated in this research. Six grams of CNTs were dispersed in the polyol ester oil used by a 2.5 ton (8.79 kW) unitary air conditioning system, which was continuously operated for 168 hours. After this time, the unit was shut down and …


Development Of Spray Cooling For High Heat Flux Electronics, Jeremy Scott Junghans Dec 2011

Development Of Spray Cooling For High Heat Flux Electronics, Jeremy Scott Junghans

Graduate Theses and Dissertations

The thermal demands of modern day electronic systems require innovative thermal solutions. Spray cooling has proven to be able to cool heat fluxes orders of magnitude higher than traditional cooling methodologies. This work includes a comparison of spray cooling to standard thermal management methodologies. Key system parameters and considerations are discussed. The properties of available packaging materials and their effect on the reliability of a spray cooled system are presented. Parameters such as fluid temperature, droplet size, fluid velocity and flow rate all directly impact performance and are detailed in this work. Finally, results from of a wide range of …