Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Mechanical Engineering

A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani May 2023

A One-Dimensional Analysis Of A Microbial Fuel Cell For Efficient Acetate Removal And Power Density Output, David Rouhani

UNLV Theses, Dissertations, Professional Papers, and Capstones

Microbial fuel cells (MFCs) are electrochemical devices that utilize microorganisms to convert organic matter into electrical energy. MFCs have been discussed to have potential application for sustainable wastewater treatment due to their ability to generate electricity while simultaneously treating contaminated water. To optimize MFC performance, numerical models can be used to understand the complex electrochemical and biological processes occurring in the system. In this study, a numerical model was developed to simulate the performance of MFCs under varying operating conditions and to investigate the performance of a MFC for treating wastewater fuel. More specifically, the MFC was modeled to oxidize …


Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost May 2023

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cu(In,Ga)(S,Se)2 or CIGS is a thin-film semiconductor that has shown a device efficiency of 23.35% and 24.2% for single-junction and perovskite/CIGS tandem solar cells, respectively. CIGS offers promising properties such as tunable bandgap and ease of processing making them great candidates for thin-film tandem devices. However, knowledge of the effect of material defects, buffer materials, and post-deposition treatment (PDT) on degradation and metastability behavior in these devices is not well understood.In this dissertation, metastability and long-term degradation of CIGS thin-film solar cells have been investigated under combinatorial stress factors of heat, light, and voltage bias to systematically understand the effect …


Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill Dec 2018

Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill

UNLV Theses, Dissertations, Professional Papers, and Capstones

As we move toward energy independence and more ambitious clean energy goals, solar energy research must push the efficiency limits of traditional energy generation systems. Increases in efficiency can be achieved by increasing the hot temperature of the power cycle. Recent research demonstrates the potential for increased efficiency and a vastly smaller component size when supercritical carbon dioxide Brayton power cycles are used. Concentrated solar and nuclear heat sources are capable of achieving the high working fluid temperatures needed for significant efficiency gains. This NSF EPSCoR funded, experimental research system is designed to exploit the uniquely immense solar irradiance of …


Stationary Nonimaging Concentrators – A Comprehensive Study And Design Improvements, Srikanth Madala Dec 2016

Stationary Nonimaging Concentrators – A Comprehensive Study And Design Improvements, Srikanth Madala

UNLV Theses, Dissertations, Professional Papers, and Capstones

Most places on our planet receive an annual average radiation between 800-1000 W/m2. In the man-made world, this radiation is largely incident on stationary structures such as buildings, roads, monuments, bridges etc. Moreover, in the natural world also, there are large tracts of barren land which can be put to good use given their solar energy potential. The vision of the current research is to concentrate all this available solar energy to a more readily usable form. Therefore, stationary nonimaging solar concentrator technologies are sought after. This dissertation work is an exhaustive research on the nonimaging concentrating mechanisms with stationary …


Simulation Of An Air Cooled Single-Effect Solar Absorption Cooling System With Evacuated Tube Collectors, Mohsen Jahandardoost Dec 2015

Simulation Of An Air Cooled Single-Effect Solar Absorption Cooling System With Evacuated Tube Collectors, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Consistently increasing CO2 emission and ozone depletion from synthetic refrigerants are serious environmental issues challenging the scientific community. Absorption cooling systems give scope of utilizing low grade energy source for generating cooling effect. Solar energy is one of these low grade energy sources and with considering the fact that cooling demand increases with the intensity of solar radiation, solar refrigeration has been considered as a logical solution.

This thesis consists of two different simulation stages, in the first stage, a single effect lithium bromide absorption cooling system with constant cooling capacity is modeled and the effect of ambient and generator …


Designing, Building And Testing A Solar Thermoelectric Generation, Steg, For Energy Delivery To Remote Residential Areas In Developing Regions, Yacouba Moumouni Dec 2015

Designing, Building And Testing A Solar Thermoelectric Generation, Steg, For Energy Delivery To Remote Residential Areas In Developing Regions, Yacouba Moumouni

UNLV Theses, Dissertations, Professional Papers, and Capstones

New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators can be a cost-effective alternative to photovoltaics for a remote residential household power supply. A complete solar thermoelectric energy harvesting system is presented for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with LTspice simulator software via thermal-to-electrical analogy schemes. Valuable data in conjunction with two novel LTspice circuits were obtained, showing …


Development Of A Black-Box Transient Thermal Model For Residential Buildings, Andrew Cross Aug 2014

Development Of A Black-Box Transient Thermal Model For Residential Buildings, Andrew Cross

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heavily populated metropolitan areas located in cooling-dominated climates, as are found in the Desert Southwest, pose a challenge to electrical utilities that service these areas. During the late afternoons of the summer months, residents of these metropolitan areas require larger than normal amounts of power to run their homes' air conditioning systems, at significant expense to the utilities. In the study reported here, interior temperature and power consumption data, accumulated over the course of a year and a half from seven houses within a Las Vegas neighborhood, are used to develop a predictive black-box statistical model for residential thermal transience. …


Study Of Water Transport Phenomena On Cathode Of Pemfcs Using Monte Carlo Simulation, Karn Soontrapa May 2014

Study Of Water Transport Phenomena On Cathode Of Pemfcs Using Monte Carlo Simulation, Karn Soontrapa

UNLV Theses, Dissertations, Professional Papers, and Capstones

This dissertation deals with the development of a three-dimensional computational model of water transport phenomena in the cathode catalyst layer (CCL) of PEMFCs. The catalyst layer in the numerical simulation was developed using the optimized sphere packing algorithm. The optimization technique named the adaptive random search technique (ARSET) was employed in this packing algorithm. The ARSET algorithm will generate the initial location of spheres and allow them to move in the random direction with the variable moving distance, randomly selected from the sampling range, based on the Lennard-jones potential of the current and new configuration. The solid fraction values obtained …


Predicting The Performance Of A Solar Domestic Water Heating System With Evacuated Tube Collectors And Hydronic Radiant Flooring, Kimberly Nicole Hammer May 2013

Predicting The Performance Of A Solar Domestic Water Heating System With Evacuated Tube Collectors And Hydronic Radiant Flooring, Kimberly Nicole Hammer

UNLV Theses, Dissertations, Professional Papers, and Capstones

Residential solar thermal system installations have been significantly increasing in the last decade and there exists limited resources for reasonably predicting the performance of those systems. A simulated model is developed in MATLAB® and used to predict the performance of a solar domestic water heating system. In the simulated system, hot water is generated using evacuated tube solar collectors and stored in a domestic hot water storage tank, which utilizes immersed coil heat exchangers. The system is designed to provide hydronic radiant floor heating to its occupants based on the heat loss of a building energy model for an energy-efficient …


Investigation Of Peak Load Reduction Strategies In Residential Buildings In Cooling Dominated Climates, Fady Atallah May 2013

Investigation Of Peak Load Reduction Strategies In Residential Buildings In Cooling Dominated Climates, Fady Atallah

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation of peak load reduction strategies in residential buildings contributes to the global international efforts in reducing energy consumption and is related directly to energy efficiency in residential and commercial buildings. Work reported here involves computer aided building energy simulation of energy efficient and non-energy efficient residential homes coupled with empirical energy consumption data gathered from monitoring an array of energy efficient residential homes. The latter have been implemented for peak load reduction strategies. In addition non-energy efficient residential homes have been monitored to compare performance to the energy efficient homes. This study demonstrates the crucial importance of energy …


Buffering Pv Output During Cloud Transients With Energy Storage, Yacouba Moumouni May 2012

Buffering Pv Output During Cloud Transients With Energy Storage, Yacouba Moumouni

UNLV Theses, Dissertations, Professional Papers, and Capstones

Consideration of the use of the major types of energy storage is attempted in this thesis in order to mitigate the effects of power output transients associated with grid-tied CPV systems due to fast-moving cloud coverage. The approach presented here is to buffer intermittency of CPV output power with an energy storage device (used batteries) purchased cheaply from EV owners or battery leasers. When the CPV is connected to the grid with the proper energy storage, the main goal is to smooth out the intermittent solar power and fluctuant load of the grid with a convenient control strategy. This thesis …


Improving Efficiency And Capacity Of Hydro-Turbines In The Western United States, Hoover Dam, Jonathan Sanchez May 2012

Improving Efficiency And Capacity Of Hydro-Turbines In The Western United States, Hoover Dam, Jonathan Sanchez

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal for this thesis is to minimize clearances and tolerances, in order to prevent water leakage. A proper seal on the seal rings does not let excess water flow through the turbine runner, thus conserving more water and wasting less energy. Moreover, water leakage past worn wear plates allows for an extra load for the turbine when operating in condense mode. When the wicket gates are closed, water leakage past worn plates wastes mechanical energy in the water; thus, decreasing the efficiency of the Francis turbine, especially when operating at partial loads. Furthermore, the wicket gates also known as …


Energy-Based Analysis Of Utility Scale Hybrid Power Systems, Kwame Agyenim-Boateng Dec 2011

Energy-Based Analysis Of Utility Scale Hybrid Power Systems, Kwame Agyenim-Boateng

UNLV Theses, Dissertations, Professional Papers, and Capstones

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources' transient behavior and the impact this would have on the operation of the grid. Among the methods cited for addressing some of those concerns are exploring the complementary nature of solar and wind power generation, and through the use of supplemental energy storage. While the technology for the latter has not been proven to be economical on a large scale at the present time, some assessments of what magnitude is required can be made. An energy-based analysis of utility …


Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann Dec 2011

Modeling Of A Novel Solar Down Beam Test Facility Utilizing Newtonian Optics, Ryan J. Hoffmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

As advances in concentrated solar energy progress there will inevitably be an increase in the demand of resources for testing new conceptions. Currently, there are limited facilities available for taking concentrated solar energy concepts from the laboratory bench scale to the engineering test scale. A proposed solution is a scientific and developmental facility that provides highly concentrated solar energy at ground level. The design presented is a solar down beam test facility utilizing a Newtonian optics approach with a flat rectangular down beam mirror to reflect and concentrate the sun's rays at ground level.

Literature review suggests a hyperbolic reflector …


Fenestration Studies On Building Energy Using The Facade Evaluation Facility, Wendell Cocina Dec 2011

Fenestration Studies On Building Energy Using The Facade Evaluation Facility, Wendell Cocina

UNLV Theses, Dissertations, Professional Papers, and Capstones

The project was developed to assess several types of facades and their influence on building energy, mainly focused on windows and other building fenestrations. Requirements for the facility are stated in this paper alongside corresponding solutions. The facility is designed to represent a section of a building façade. Experimenting on a wide range of fenestrations including windows with integrated PV elements was the primary prerequisite. The option of removable façade configurations was used and allowed testing specimens to be changed effortlessly. Instrumentation and data acquisition are discussed including calibration and uncertainty analysis. Investigation of the air conditioning unit was concluded …


Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy Aug 2011

Time-Dependent Crack Growth Behavior Of Alloy 617 And Alloy 230 At Elevated Temperatures, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (K max = 27.75 MPa[checkmark]m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter - stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for …


Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz May 2011

Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Passive Neutron Albedo Reactivity technique (PNAR) was used to assay used nuclear fuel as a potential method for the measurement of fissionable material in fuel assemblies. A Monte Carlo transport code (MCNPX 2.6) was used to develop simulation models to evaluate the PNAR technique. The MCNPX simulated models consisted of two 17x17 Pressurized Water Reactor (PWR) used fuel assemblies; one with an initial 3 wt% uranium-235*, cooled for 20 years and second with an initial 4 wt% uranium-235*, cooled for 5 years. Each used fuel assembly was simulated at four different burn up rates of 15, 30, 45, and …


Impact Investigation Of Reactor Fuel Operating Parameters On Reactivity For Use In Burnup Credit Applications, Tanya N. Sloma Nov 2010

Impact Investigation Of Reactor Fuel Operating Parameters On Reactivity For Use In Burnup Credit Applications, Tanya N. Sloma

UNLV Theses, Dissertations, Professional Papers, and Capstones

When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide …


Wind Flow Modeling For Wind Energy Analysis Of The Nellis Dunes Area In Nevada, Upendra Rangegowda Aug 2010

Wind Flow Modeling For Wind Energy Analysis Of The Nellis Dunes Area In Nevada, Upendra Rangegowda

UNLV Theses, Dissertations, Professional Papers, and Capstones

A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate the surface model and to create a 3-D mesh of the region. Local meteorological tower data collected for a period of one year was used to generate the diagnostic initial wind fields. Upper level wind fields were created using a surface boundary layer technique along with linear interpolation of the tower level wind fields. The vertical components of the velocities were adjusted using the equation of continuity. Mass consistent 3-D wind fields were then calculated …


Parametric Study Of Efficiency Measures For Home Energy Conservation In Las Vegas, Nevada, Todd M. France Jan 2009

Parametric Study Of Efficiency Measures For Home Energy Conservation In Las Vegas, Nevada, Todd M. France

UNLV Theses, Dissertations, Professional Papers, and Capstones

Pulte Homes, a production home builder and community developer partnering with the U.S. Department of Energy's Building America program, has collaborated with the Center for Energy Research at the University of Nevada, Las Vegas and NV Energy, the local electric utility, on an energy conservation project in the Las Vegas Valley.

This study entails four model homes at a new development in the Summerlin community of Las Vegas, Nevada, named Villa Trieste. The home models, ranging in floor plan area from 1,487 to 1,777 square feet, have been constructed under the Environments for Living program and are LEED (Leadership in …


Empirically Derived Formulas To Predict Indoor Maximum, Average, And Minimum Temperatures In Roofpond Buildings Using Minimum Climatic Information, Ibrahim Kivarkis Kako Jan 2009

Empirically Derived Formulas To Predict Indoor Maximum, Average, And Minimum Temperatures In Roofpond Buildings Using Minimum Climatic Information, Ibrahim Kivarkis Kako

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis introduces an empirically developed formula to predict the comfort conditions and thermal performance of a Skytherm(TM) Southwest Roofpond placed over a light-weight un-insulated structure built at the School of Architecture at the University of Nevada, Las Vegas.

The predictive formula introduced in this study may be used in different parts of the world (particularly developing nations where insulation and air-conditioning are rarely used) to predict the performance of a Skytherm(TM) Southwest Roofpond using minimal climate data.

The data collected in the experimental setup at the Natural Energies Advanced Technologies Laboratory included outside and inside temperatures of various surfaces …


Two-Tank Indirect Thermal Storage Designs For Solar Parabolic Trough Power Plants, Joseph E. Kopp Jan 2009

Two-Tank Indirect Thermal Storage Designs For Solar Parabolic Trough Power Plants, Joseph E. Kopp

UNLV Theses, Dissertations, Professional Papers, and Capstones

The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy from the sun into steam. The steam is utilized in a traditional Rankine cycle power plant. The most commercially accepted thermal storage design is an indirect two-tank molten salt storage system where molten salt interacts with the solar field heat transfer fluid (HTF) through a heat exchanger. The molten salt remains in a closed loop with the HTF and the HTF is the heat source for steam generation. An alternate indirect two tank molten salt …


Optimization Of Channel Geometry In A Proton Exchange Membrane (Pem) Fuel Cell, Jephanya Kasukurthi Jan 2009

Optimization Of Channel Geometry In A Proton Exchange Membrane (Pem) Fuel Cell, Jephanya Kasukurthi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Bipolar plates are the important components of the PEM fuel cell. The flow distribution inside the bipolar plate should be uniform. Non-uniform flow distribution inside the bipolar leads to poor performance of the fuel cell and wastage of expensive catalyst. A single channel PEM fuel cell is taken and electrochemical analysis is carried out on it. The results are compared with the available published experimental data obtained by other research group, and they are found to be in good agreement. A baseline design of the bipolar plate is taken and numerical analysis is carried out. The results show that the …


Optimization Of Solid Oxide Fuel Cell Interconnect Design, Krishna C. Pulagam Jan 2009

Optimization Of Solid Oxide Fuel Cell Interconnect Design, Krishna C. Pulagam

UNLV Theses, Dissertations, Professional Papers, and Capstones

Performance of solid oxide fuel cells (SOFC) is dependent of a set of complex physical and chemical processes occurring simultaneously. Interconnect for SOFC is important as it provides electrical connection between anode of one individual cell to the cathode of neighboring one. It also acts as a physical barrier to protect the air electrode material from the reducing environment of the fuel on the fuel electrode side, and it equally prevents the fuel electrode material from contacting with oxidizing atmosphere of the oxidant electrode side. A three-dimensional numerical model has been developed to evaluate the SOFC including the current collector, …


Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh Jan 2009

Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen as a fuel source has received attention from researchers globally due to its potential to replace fossil based fuels for energy production. Research is being performed on hydrogen production, storage and utilization methods to make its use economically feasible relative to current energy sources. The PEM electrolyzer is used to produce hydrogen and oxygen using water and electricity. Focus of our study is to provide a benchmark experiment and numerical model of a single cell electrolyzer that can assist in improving the current state of understanding of this system. Parametric analysis of an experimental cell was performed to understand …


Design And Simulation Of An Induction Skull Melting System, Taide Tan May 2004

Design And Simulation Of An Induction Skull Melting System, Taide Tan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Incorporating volatile actinides, mainly americium into a metallic fuel pin (MFP) has been a serious problem due to americium’s high vapor pressure. An Induction Skull Melting (ISM) system was identified by Argonne National Laboratory (ANL) as a potential furnace design to cast MFPs. Through the development of the ISM system, the nuclear waste feedstock can be melted and injected into the mold for fabricating MFPs in the advanced nuclear fuel cycles. The main phenomena in this system include: induction melting process, casting process and mass transfer process of americium. Issues related to ISM system design for casting MFPs are discussed …


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu Aug 2002

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fundamental issues related to the selection of a metallic fuel casting furnace design are presented and discussed including heating mechanisms, casting issues, crucible design, and issues related to the mass transport of americium. The process of evaluating all of these different criteria is undertaken to select a concept that would have the greatest chance of success for casting americium in a metallic fuel rod. Based on this evaluation process, a concept for the casting of metallic fuel pins containing high vapor pressure materials is selected and discussed. The important physics of this concept include mass transport of americium from the …