Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles …


Evaluation Of Thermal Radiation Effects On Apparent Propagation Rates Of High Pressure Spherical Flames, Jeffrey S. Santner, Francis M. Haas, Yiguang Ju, Frederick L. Dryer Sep 2013

Evaluation Of Thermal Radiation Effects On Apparent Propagation Rates Of High Pressure Spherical Flames, Jeffrey S. Santner, Francis M. Haas, Yiguang Ju, Frederick L. Dryer

Francis (Mac) Haas

Thermal radiation is usually not considered in the interpretation of laminar burning rates measured by the outwardly propagating spherical flame method. However, it may contribute significantly to measurement uncertainty, especially for model-constraining conditions at lower flame temperatures and higher pressures. The present work derives a conservative analytical estimate of the effects of radiation heat loss, which include radiation-induced burned gas motion, decreasing flame temperature due to conduction to the radiating burned gas, and radiation loss from the flame zone. Detailed numerical simulations covering a range of burning conditions serve to validate this analytical tool. Modeling results from both detailed simulation …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam Jun 2013

Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam

Dissertations

The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range …


Universal Scaling And Intrinsic Classification Of Electro-Mechanical Actuators, Sambit Palit, Ankit Jain, Muhammad A. Alam Apr 2013

Universal Scaling And Intrinsic Classification Of Electro-Mechanical Actuators, Sambit Palit, Ankit Jain, Muhammad A. Alam

Birck and NCN Publications

Actuation characteristics of electromechanical (EM) actuators have traditionally been studied for a few specific regular electrode geometries and support (anchor) configurations. The ability to predict actuation characteristics of electrodes of arbitrary geometries and complex support configurations relevant for broad range of applications in switching, displays, and varactors, however, remains an open problem. In this article, we provide four universal scaling relationships for EM actuation characteristics that depend only on the mechanical support configuration and the corresponding electrode geometries, but are independent of the specific geometrical dimensions and material properties of these actuators. These scaling relationships offer an intrinsic classification for …


Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski Jan 2013

Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski Jan 2013

Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski

Wojciech Budzianowski

This article provides an analysis of processes for separation CO2 by using carbonic anhydrase enzyme with particular emphasis on reactive-membrane solutions. Three available processes are characterised. Main challenges and prospects are given. It is found that in view of numerous challenges practical applications of these processes will be difficult in near future. Further research is therefore needed for improving existing processes through finding methods for eliminating their main drawbacks such as short lifetime of carbonic anhydrase or low resistance of reactive membrane systems to impurities contained in flue gases from power plants.


Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski Dec 2012

Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski

Wojciech Budzianowski

This article describes methods of the determination of kinetic parameters from the thermogravimetric data set of biomass samples. It presents the methodology of the research, description of the needed equipment, and the method of analysis of thermogravimetric data. It describes both methodology of obtaining quantitative data such as kinetic parameters as well as of obtaining qualitative data like the composition of biomass. The study is focused mainly on plant biomass because it is easy in harvesting and preparation. Methodology is shown on the sample containing corn stover which is subsequently pyrolysed. The investigated sample show the kinetic of first order …