Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 140

Full-Text Articles in Mechanical Engineering

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald May 2019

High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Turbulent fluid flow is an incredibly unpredictable subject that continues to confound scientists and engineers. All of the empirical data that has been the basis of conventional turbulent computational fluid dynamics (CFD) models for decades only extends to roughly the equivalent turbulence created when Michael Phelps swims in a pool. The problem is that this data is then extrapolated out many orders of magnitude in order to design cruise ships, airplanes, and rockets which operate in significantly more turbulent flow regimes. This creates an incredible degree of uncertainty in the design process that demands over-engineering and increased expenditures.

The development ...


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and ...


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential ...


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. May 2019

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


Current Progress And Future Challenges In Rare-Earth-Free Permanent Magnets, Jun Cui, Matthew J. Kramer, Lin Zhou, Fei Liu, Alexander Gabay, George Hadjipanayis, Balamurugan Balasubramanian, David Sellmyer Jul 2018

Current Progress And Future Challenges In Rare-Earth-Free Permanent Magnets, Jun Cui, Matthew J. Kramer, Lin Zhou, Fei Liu, Alexander Gabay, George Hadjipanayis, Balamurugan Balasubramanian, David Sellmyer

Ames Laboratory Accepted Manuscripts

Permanent magnets (PM) are critical components for electric motors and power generators. Key properties of permanent magnets, especially coercivity and remanent magnetization, are strongly dependent on microstructure. Understanding metallurgical processing, phase stability and microstructural changes are essential for designing and improving permanent magnets. The widely used PM for the traction motor in electric vehicles and for the power generator in wind turbines contain rare earth elements Nd and Dy due to their high maximum energy product. Dy is used to sustain NdFeB's coercivity at higher temperature. Due to the high supply risk of rare earth elements (REE) such as ...


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks Jun 2018

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge it ...


An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox May 2018

An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox

Rodney O. Fox

The extended quadrature method of moments (EQMOM) for the solution of population balance equations (PBE) is implemented in the open-source computational fluid dynamic (CFD) toolbox OpenFOAM as part of the OpenQBMM project. The moment inversion procedure was designed (Nguyen et al., 2016) to maximize the number of conserved moments in the transported moment set. The algorithm is implemented in a general structure to allow the addition of other kernel density functions defined on R+, and arbitrary kernels to describe physical phenomena involved in the evolution of the number density function. The implementation is verified with a set of zero-dimensional cases ...


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation ...


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where ...


The Effects Of Surface Pace In Baseball, Jason Farlow May 2018

The Effects Of Surface Pace In Baseball, Jason Farlow

Senior Theses

A baseball travels across different surfaces at different paces. The goal of this experiment is to find a percentage difference in speeds the ball will reflect off a given surface. The energy lost on the turf surface was far more significant than on dirt surface as the turf lost an average of 26% of its energy as compared to just 16% of the energy on dirt. In the Northwest conference, teams play on four turf-based infields and five dirt-based infields. The results of this study suggest that kinetic friction forces are more significant in reducing ball rebound speed than in ...


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than those ...


Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski Apr 2018

Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski

Engineering and Applied Science Theses & Dissertations

Few experimental methods today are capable of exploring the strength of materials at high strain rates (105 s-1). Those that are capable, such as the Split Hopkinson Bar, Taylor Anvil and Plate Impact suffer from instability and are generally limited to one dimensional wave propagation. Of particular interest is material response under biaxial compression, similar to that seen in inertial confinement fusion. Laser fusion fuel pellets typically undergo large strain rates as well as plastic deformation and non-linear behavior. This work briefly outlines an experimental procedure designed to replicate these large strain rates under biaxial compression using spherical ...


An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox Feb 2018

An Open-Source Quadrature-Based Population Balance Solver For Openfoam, Alberto Passalacqua, Frédérique Laurent, Ehsan Madadi-Kandjani, Jeffrey C. Heylmun, Rodney O. Fox

Chemical and Biological Engineering Publications

The extended quadrature method of moments (EQMOM) for the solution of population balance equations (PBE) is implemented in the open-source computational fluid dynamic (CFD) toolbox OpenFOAM as part of the OpenQBMM project. The moment inversion procedure was designed (Nguyen et al., 2016) to maximize the number of conserved moments in the transported moment set. The algorithm is implemented in a general structure to allow the addition of other kernel density functions defined on R+, and arbitrary kernels to describe physical phenomena involved in the evolution of the number density function. The implementation is verified with a set of zero-dimensional cases ...


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Jan 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model ...


Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett Dec 2017

Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett

Mechanical Engineering

This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots.


Measurement Of Speed Of Sound Profile Using Laaces Balloon, Zhuang Li, Brett Schaefer, Brian Schaefer, William Dever, Tyler Morgan, Matthew Foltz Oct 2017

Measurement Of Speed Of Sound Profile Using Laaces Balloon, Zhuang Li, Brett Schaefer, Brian Schaefer, William Dever, Tyler Morgan, Matthew Foltz

2017 Academic High Altitude Conference

The goal of this mission is to test the speed of sound at different altitudes and ultimately at a maximum height of 100,000 feet (30 km). In conjunction with this testing, environmental parameters including temperature, pressure, and humidity are measured and used to calculate the speed of sound to compare to the measured results. The team constructed the payload “Dorothy” using polystyrene foam due to its lightweight and thermal isolation property. An ultrasonic sensor with a reflection mirror were installed outside payload box to measure speed of sound. All the sensors were calibrated. Software for the project was developed ...


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides ...


On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are ...


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Mar 2017

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski Jan 2017

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski

Wojciech Budzianowski

-


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski Jan 2017

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Experimental Validation Of Natural Convection In A Rectangle Using Schlieren Imaging, Patrick C. Doherty, Heather E. Dillon, Justin Roberts Jan 2017

Experimental Validation Of Natural Convection In A Rectangle Using Schlieren Imaging, Patrick C. Doherty, Heather E. Dillon, Justin Roberts

Engineering Faculty Publications and Presentations

The onset of turbulence in natural convection systems is difficult to predict using traditional computational techniques. The flow patterns that occur before and after the onset of turbulence may be better understood with the help of visual techniques like Schlieren imaging. Schlieren imaging allows visualization of the density gradients of a fluid using collimated light and refractive properties. In this experiment, a device was designed to test the behavior of airflow with non-isothermal boundary conditions within a rectangular cavity. Previous computational fluid modeling suggested a period doubling route to chaos in a cavity with a high aspect ratio and free ...


Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist Dec 2016

Development, Analysis, And Optimization Of A Swirl-Promoting Mean Flow Solution For Solid Rocket Motors, Andrew Steven Fist

Masters Theses

This work demonstrates and analyses a new flow candidate for describing the internal gaseous motion in simulated rocket motors. The fundamental features of this solution include the conservation of key system properties also incorporated in the classic Taylor-Culick (TC) system (i.e. inviscid, axisymmetric, steady and rotational properties), while allowing for the development of a swirling velocity component. The work compares the new solution to the development and formulation of the classic TC system, ultimately identifying that both the new and classic solutions are special cases of the Bragg-Hawthorne equation. Following this development, the text then explores the development of ...


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared ...


Big Area Additive Manufacturing Of High Performance Bonded Ndfeb Magnets, Li Ling, Angelica Tirado, I. C. Nlebedim, Orlando Rios, Brian Post, Vlastimil Kunc, R. R. Lowden, Edgar Lara-Curzio, Magnet Applications, Inc., Thomas A. Lograsso, M. Parans Paranthaman Oct 2016

Big Area Additive Manufacturing Of High Performance Bonded Ndfeb Magnets, Li Ling, Angelica Tirado, I. C. Nlebedim, Orlando Rios, Brian Post, Vlastimil Kunc, R. R. Lowden, Edgar Lara-Curzio, Magnet Applications, Inc., Thomas A. Lograsso, M. Parans Paranthaman

Ames Laboratory Publications

Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties ...


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost ...