Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake Jul 2023

Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake

Mechanical Engineering

The Northrop Grumman Collaboration Project (NGCP) is a collaborative club project sponsored by Northrop Grumman for the students of Cal Poly San Luis Obispo (CPSLO) and Cal Poly Pomona (CPP) to create a fleet of vehicles to aid in the simulated rescue of stranded hiker. The CPSLO club is responsible for delivering an autonomous flight vehicle that can suppress a fire and retrieve a payload. Mechanical Design Team of the CPSLO team was responsible for the design of the frame, electronics housing, and payload and fire suppression systems.


Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake Apr 2023

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Northrop Grumman Collaboration Project, Nikkia Rae Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake Jan 2023

Northrop Grumman Collaboration Project, Nikkia Rae Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake

Mechanical Engineering

The Northrop Grumman Collaboration Project (NGCP) is a collaborative club project sponsored by Northrop Grumman for the students of Cal Poly San Luis Obispo (CPSLO) and Cal Poly Pomona (CPP) to create a fleet of vehicles to aid in the simulated rescue of stranded hiker. The CPSLO club is responsible for delivering an autonomous flight vehicle that can suppress a fire and retrieve a payload. Mechanical Design Team of the CPSLO team was responsible for the design of the frame, electronics housing, and payload and fire suppression systems.


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Autonomous Navigation Of The Surface Autonomous Vehicle For Emergency Rescue (Saver), Andrew Skow Jun 2021

Autonomous Navigation Of The Surface Autonomous Vehicle For Emergency Rescue (Saver), Andrew Skow

ENGS 88 Honors Thesis (AB Students)

Once dropped into the ocean, SAVER will autonomously navigate towards the Advanced Next-Generation Emergency Locator beacon, worn by every NASA astronaut, that emits a 121.5 MHz distress signal. Using a rotating directional loop antenna SAVER is able to detect and identify the direction of the distress beacon and navigate itself towards the signal source. The autonomous navigation system is dependent on several electrical, and mechanical systems to function properly and presents a novel systems engineering problem. Given testing limitations, NASA requires that SAVER is designed to operate indoors and with an umbilical power supply. The radio direction finding (RDF) system …


Saver (Surface Autonomous Vehicle For Emergency Rescue), Tyler Jorgensen, Ethan Miller, Josephine Isaacson, Joshua Hoye Jun 2021

Saver (Surface Autonomous Vehicle For Emergency Rescue), Tyler Jorgensen, Ethan Miller, Josephine Isaacson, Joshua Hoye

Mechanical Engineering

This document serves to introduce the design team and their competition challenge, as well as to detail the results of the project. The original design challenge was the NASA Micro-g NExT’s SAVER (Surface Autonomous Vehicle for Emergency Rescue) competition; we were tasked with developing a self-driving water vehicle capable of delivering supplies to Orion astronauts separated from the rest of their crew in the case of a maritime emergency. However, we were not selected to go forward in this competition and thus we decided to scale down the size of the SAVER device to shift the focus of the project …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee May 2019

Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee

Mechanical Engineering

The purpose of this project is to demonstrate the safety and increased fuel efficiency of an automated collision avoidance system in collaborative vehicle platooning. This project was cosponsored by Daimler Trucks North America headquartered in Portland, Oregon, as well as Dr. Birdsong, and Dr. DeBruhl of Cal Poly. The mechanical engineering team consists of Cole Oppenheim, James Gildart, Toan Le, and Kyle Bybee who worked in coordination with a team of computer engineers. Vehicle platooning is a driving technique to increase the fuel efficiency of a group of vehicles by following a lead vehicle closely to reduce the drag experienced …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


Simulation Of Scalability For Autonomous Mobile Microgrids, Nathan Beyers Jan 2016

Simulation Of Scalability For Autonomous Mobile Microgrids, Nathan Beyers

Dissertations, Master's Theses and Master's Reports

Microgrids are small-scale, decentralized systems for generation, storage, and management of electricity to provide power within a local area. By establishing these microgrids using autonomous robots, they can be made safer and more easily reconfigurable. This thesis presents a plan and outlines the infrastructure needed for scaling up previous experimental work on such systems. This work brings together a variety of tools in the form of both software and hardware to set the stage for how further development can be completed. An architecture for physical testing has been built to validate the full potential of navigation and making electrical connections …


Hydromodus: An Autonomous Underwater Vehicle, Alex Kost, Anu Mahinkanda, Jordan Read Jun 2015

Hydromodus: An Autonomous Underwater Vehicle, Alex Kost, Anu Mahinkanda, Jordan Read

Electrical Engineering

Hydromodus is a student-led multidisciplinary project conceived by Jordan Read designed to provide a low-cost modular hardware and software solution for researchers and scientists. For the scope of the Senior Project class, it is designed to be a baited remote underwater vehicle (BRUV), but the platform is highly modifiable and open-source.


Autonomous Collision Avoidance, Thomas Stevens, Elliot Carlson, Ian Painter Jun 2013

Autonomous Collision Avoidance, Thomas Stevens, Elliot Carlson, Ian Painter

Mechanical Engineering

A steering controlled, autonomous collision avoidance system has been developed by California Polytechnic State University. This system represents a step in the direction of fully autonomous driving, while allowing the driver to maintain control of the vehicle during normal driving conditions. In the case of an imminent collision, the system removes control of the vehicle from the user and autonomously steers around the obstacles. The final system is able to avoid two static obstacles with a 95% pass rate and one moving obstacle with a 50% pass rate. With full scale, fleet wide, implementation of this system it is expected …