Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Mechanical Engineering

Sample Size Effect On Combustion Analysis, Osueke C. O, Uguru Okorie Daniel, Aondoyila Kuhe Jul 2015

Sample Size Effect On Combustion Analysis, Osueke C. O, Uguru Okorie Daniel, Aondoyila Kuhe

Innovative Research Publications IRP India

Engine parameters vary from one cycle to the other and this makes engine analysis with data from a single working cycle insufficient in capturing or modelling an engine behaviour. The variation observed in engine has necessitated the use sample sizes of data obtained during an engine operation to obtain results that are representative of the engine being investigated. Research has shown that the use of very large data sample size increases the storage needed and processing time and does not necessary give better results over results obtained with lesser sample sizes. The number of sample size to use for analysis …


Electromagnetic Interference Shielding Of Mwcnt/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite, C. Sarala Rubi, S. Gowthaman, N. G. Renganathan Jul 2015

Electromagnetic Interference Shielding Of Mwcnt/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite, C. Sarala Rubi, S. Gowthaman, N. G. Renganathan

Innovative Research Publications IRP India

Electromagnetic Interference (EMI) Shielding material containing a blend of multi walled carbon nano tube (MWCNT) and mumetal has been prepared and their electromagnetic shielding capabilities were characterised through XRD, SEM, EDAX, etc. The shielding effectiveness (SE) was measured using vector network analyser in X-band frequency range (8-12 GHz).


Induction Hardening And Microstructure Analysis Of Micro-Alloyed Steel Roller Shaft Of An Undercarriage, S. Gajanana, B. Suresh Kumar Reddy, T. Shivendra Lohit, K. Anil Kumar Reddy, Ankur Jain Jul 2015

Induction Hardening And Microstructure Analysis Of Micro-Alloyed Steel Roller Shaft Of An Undercarriage, S. Gajanana, B. Suresh Kumar Reddy, T. Shivendra Lohit, K. Anil Kumar Reddy, Ankur Jain

Innovative Research Publications IRP India

The current work focuses on study of input parameters of induction hardening process of micro-alloyed steel roller shaft of an Undercarriage. Regression relation is generated for hardness using Response Surface Methodology (RSM) by using Design Expert Software as a tool for optimization. Further, the micro structure of selected shafts was analyzed.


Comparative Study Of The Energy Absorption Capacities Of Xps And Xpe Foam Filled Aluminium Square Tubes Under Quasi-Static Axial Compression, Suman Bargav. R, Venkataswamy. K. S, Suresh P. M Jul 2015

Comparative Study Of The Energy Absorption Capacities Of Xps And Xpe Foam Filled Aluminium Square Tubes Under Quasi-Static Axial Compression, Suman Bargav. R, Venkataswamy. K. S, Suresh P. M

Innovative Research Publications IRP India

Quasi-static compression tests were performed on empty and foam filled Aluminium square tubes. Two different foam types: Extended Polystyrene (XPS) and Extended Polyethylene (XPE) were used to fill the empty tubes. In this paper experimental and numerical simulations were performed to investigate the effect of foam filling on crashworthiness parameters.


Production & Process Optimization Of Micro Alloyed Steel Roller Shaft Of An Under Carriage, S. Gajanana, Kulkarni Rahul, Shreyas Gampa, Tharun Vempati, Jv Srinath Jul 2015

Production & Process Optimization Of Micro Alloyed Steel Roller Shaft Of An Under Carriage, S. Gajanana, Kulkarni Rahul, Shreyas Gampa, Tharun Vempati, Jv Srinath

Innovative Research Publications IRP India

Manufacturing or production is one of the most important sectors of any field. It involves various steps or processes to convert raw materials into finished products. With the more precise demands of modern engineering products and competition to provide good quality, the surface finish, dimensional accuracy along with metal removal rate (MRR) plays a very important role. The selection of optimum cutting conditions (depth of cut, feed and speed) is an important element of process planning for every machining operation. In order to optimize the output parameters i.e., MRR, power consumption and surface roughness, the process variables are varied. Inspite …


Mechanical Design Of A Low-Cost Deployable Solar Panel Array For A 1-U Cubesat, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen Mar 2015

Mechanical Design Of A Low-Cost Deployable Solar Panel Array For A 1-U Cubesat, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

CubeSats are small spacecraft with a nominal size of 10 cm x 10 cm x 10 cm and a mass of 1.33 kg (though some launch providers are now supporting expanded mass levels). While the CubeSat form factor has reduced the time and cost of spacecraft development, the required resources are still beyond the grasp of many colleges and universities. The Open Prototype for Educational Nanosats (OPEN) concept aims to solve this problem. OPEN is an inexpensive modular CubeSat that can be produced with a parts budget of less than $5,000. The OpenOrbiter program is working to develop this set …


Design And Development Of A Payload Area Sub-Structure For A 1-U Cubesat, Tristan Plante, Jordan Forbord, Alexander Holland, Landon Klein, Benjamin Kading, Jeremy Straub, Ronald Marsh Mar 2015

Design And Development Of A Payload Area Sub-Structure For A 1-U Cubesat, Tristan Plante, Jordan Forbord, Alexander Holland, Landon Klein, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

Advancements in the miniaturization of electronics and other factors have allowed CubeSats, small satellites that can be created at a much lower cost than a large satellite, to perform numerous useful tasks. CubeSats, which are nominally 10 cm x 10 cm x 10 cm with a mass of less than 1.33 kg, are also developed in academic institutions to aid student learning; however, the development and launch of CubeSats can be expensive. Because of this, the Open Prototype for Educational NanoSats (OPEN) aims to make CubeSat development more affordable by developing a set of design documents as well as the …


Openorbiter Mechanical Design: A New Approach To The Design Of A 1-U Cubesat, Benjamin Kading, Jeremy Straub, Ronald Marsh Jan 2015

Openorbiter Mechanical Design: A New Approach To The Design Of A 1-U Cubesat, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative is working to create a set of designs and implementation instructions for a 1-U CubeSat, called the Open Prototype for Educational NanoSats. These designs target a total parts cost of below USD $5,000. This design will be made publically available to facilitate its use by others, with or without modification. A ‘side slotted’ CubeSat design (where main circuit boards are placed in slots between the rails on the outside) has been developed for OpenOrbiter. This paper discusses the design choices that were made during the mechanical structure development of the OpenOrbiter CubeSat design, required …


Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han Mar 2011

Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han

Kwanghoon Han

The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each …


Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han Apr 2010

Determination Of Material Emission Signatures By Ptr-Ms And Their Correlations With Odor Assessments By Human Subjects, Kwanghoon Han

Kwanghoon Han

The objectives of this study were to determine volatile organic compound (VOC) emission signatures of nine typical building materials by using proton transfer reaction-mass spectrometry (PTR-MS) and to explore the correlation between the PTR-MS measurements and the measurements of acceptability by human subjects. VOC emissions from each material were measured in a 50-l small-scale chamber. Chamber air was sampled by PTR-MS to determine emission signatures. Sorbent tube sampling and TD-GC/MS analysis were also performed to identify the major VOCs emitted and to compare the resulting data with the PTR-MS emission signatures. The data on the acceptability of air quality assessed …


Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Jun 2009

Ultra-Thin Super High Frequency Two-Port Aln Contour-Mode Resonators And Filters, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the demonstration of a new class of ultra-thin (250 nm thick) Super High Frequency (SHF) AlN piezoelectric two-port resonators and filters. A thickness field excitation scheme was employed to excite a higher order contour extensional mode of vibration in an AlN nano plate (250 nm thick) above 3 GHz and synthesize a 1.96 GHz narrow-bandwidth channel-select filter. The devices of this work are able to operate over a frequency range from 1.9 to 3.5 GHz and are employed to synthesize the highest frequency MEMS filter based on electrically self-coupled AlN contour-mode resonators. Very narrow bandwidth (~ …


Demonstration Of Inverse Acoustic Band Gap Structures In Aln And Integration With Piezoelectric Contour Mode Transducers, Nai-Kuei Kuo, Chengjie Zuo, Gianluca Piazza Jun 2009

Demonstration Of Inverse Acoustic Band Gap Structures In Aln And Integration With Piezoelectric Contour Mode Transducers, Nai-Kuei Kuo, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper presents the first design and demonstration of a novel inverse acoustic band gap (IABG) structure in aluminum nitride (AlN) and its direct integration with piezoelectric contour-mode transducers. The experimental results indicate that the IABG structure has a stop band from 185 MHz to 240 MHz and is centered around 219 MHz with maximum rejection of 30 dB. The ABG-induced phonon scattering causes a frequency band gap that prohibits the propagation of certain acoustic wavelengths. In this work, the IABG unit cell consists of a high acoustic velocity (V) center material, which is formed by 2-μm-thick AlN sandwiched by …


Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza Apr 2009

Aln Contour-Mode Resonators For Narrow-Band Filters Above 3 Ghz, Matteo Rinaldi, Chiara Zuniga, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper reports on the design and experimental verification of a new class of thin-film (250 nm) Super High Frequency (SHF) laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions in order to excite a contour-extensional mode of vibration in nano features of an ultra-thin (250 nm) Aluminum Nitride (AlN) film. In this first demonstration two-port resonators vibrating up to 4.5 GHz were fabricated on the same die and attained electromechanical coupling, kt2, in excess of …


Demonstration Of Inverse Acoustic Band Gap Structures In Aln And Integration With Piezoelectric Contour Mode Wideband Transducers, Nai-Kuei Kuo, Chengjie Zuo, Gianluca Piazza Apr 2009

Demonstration Of Inverse Acoustic Band Gap Structures In Aln And Integration With Piezoelectric Contour Mode Wideband Transducers, Nai-Kuei Kuo, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

This paper presents the first design and demonstration of a novel inverse acoustic band gap (IABG) structure in aluminum nitride (AlN) and its direct integration with contour-mode wideband transducers in the Very High Frequency (VHF) range. This design implements an efficient approach to co-fabricate in-plane AlN electro-acoustic transducers with bulk acoustic waves (BAWs) IABG arrays (10x10). The IABG unit cell consists of a cylindrical high acoustic velocity (V) media, which is held by four thin tethers, surrounded by a low acoustic velocity matrix (air). The center media is formed by 2-μm-thick AlN, which is sandwiched by 200-nm-thick top and bottom …


Integration Of Aln Micromechanical Contour-Mode Technology Filters With Three-Finger Dual Beam Aln Mems Switches, Nipun Sinha, Rashed Mahameed, Chengjie Zuo, Gianluca Piazza Apr 2009

Integration Of Aln Micromechanical Contour-Mode Technology Filters With Three-Finger Dual Beam Aln Mems Switches, Nipun Sinha, Rashed Mahameed, Chengjie Zuo, Gianluca Piazza

Chengjie Zuo

In this paper, we present the first demonstration of the monolithic integration of Aluminum Nitride (AlN) micromechanical contour mode technology filters with dual-beam actuated MEMS AlN switches. This integration has lead to the development of the first prototype of a fully-integrated all-mechanical switchable filter. Integration has been demonstrated by using AlN contour-mode MEMS filters at two center frequencies, i.e. 98.7 and 279.9 MHz. The micromechanical switch design used here is a novel three-finger dual-beam topology that improves the isolation and insertion loss of the switch by decreasing the parasitic coupling between the DC and RF signals over a previous AlN …