Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman Aug 2022

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman

Graduate Theses and Dissertations

Research on design thinking and design decision-making is vital for discovering and utilizing beneficial design patterns, strategies, and heuristics of human designers in solving engineering design problems. It is also essential for the development of new algorithms embedded with human intelligence and can facilitate human-computer interactions. However, modeling design thinking is challenging because it takes place in the designer’s mind, which is intricate, implicit, and tacit. For an in-depth understanding of design thinking, fine-grained design behavioral data are important because they are the critical link in studying the relationship between design thinking, design decisions, design actions, and design performance. Therefore, …


Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi Aug 2022

Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi

Graduate Theses and Dissertations

Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa Dec 2021

Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa

Graduate Theses and Dissertations

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. However, manually placing the RFA needle at the site of the tumor is challenging due to the complicated respiratory induced motion of the liver. This paper presents the design, fabrication, and benchtop characterization of a patient mounted, respiratory compensated robotic needle insertion platform to perform percutaneous needle interventions. The robotic platform consists of a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. The active …


Material Detection With Thermal Imaging And Computer Vision: Potentials And Limitations, Jared Poe Jul 2021

Material Detection With Thermal Imaging And Computer Vision: Potentials And Limitations, Jared Poe

Graduate Theses and Dissertations

The goal of my masters thesis research is to develop an affordable and mobile infraredbased environmental sensoring system for the control of a servo motor based on material identification. While this sensing could be oriented towards different applications, my thesis is particularly interested in material detection due to the wide range of possible applications in mechanical engineering. Material detection using a thermal mobile camera could be used in manufacturing, recycling or autonomous robotics. For my research, the application that will be focused on is using this material detection to control a servo motor by identifying and sending control inputs based …


Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel Jul 2021

Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel

Graduate Theses and Dissertations

This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network …


Towards A Cyber-Physical Manufacturing Cloud Through Operable Digital Twins And Virtual Production Lines, Md Rakib Shahriar Jul 2020

Towards A Cyber-Physical Manufacturing Cloud Through Operable Digital Twins And Virtual Production Lines, Md Rakib Shahriar

Graduate Theses and Dissertations

In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services …


Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano May 2019

Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano

Graduate Theses and Dissertations

This research proposes novel fault adaptive workload allocation (FAWA) strategies for the health management of complex manufacturing systems. The primary goal of these strategies is to minimize maintenance costs and maximize production by strategically controlling when and where failures occur through condition-based workload allocation.

For complex systems that are capable of performing tasks a variety of different ways, such as an industrial robot arm that can move between locations using different joint angle configurations and path trajectories, each option, i.e. mission plan, will result in different degradation rates and life-expectancies. Consequently, this can make it difficult to predict when a …


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford May 2019

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Graduate Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective …


The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley Dec 2018

The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley

Graduate Theses and Dissertations

In the realm of additive manufacturing there is an increasing trend among makers to create designs that allow for end-users to alter them prior to printing an artifact. Online design repositories have tools that facilitate the creation of such artifacts. There are currently no rules for how to create a good customizable design or a way to measure the degree of customization within a design. This work defines three types of customizations found in additive manufacturing and presents three metrics to measure the degree of customization within designs based on the three types of customization. The goal of this work …