Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney Jul 2019

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use a thermoelectric generator module to analyze the relationship between thermal and electrical energies. Using data collection sensors and analysis software, students will investigate the relationship between the temperature gradient across a thermoelectric generator module and the resulting electrical potential. Students will then use their data and analysis to solve problems relating to waste thermal energy in electrical systems and communicate their work to their peers and teacher.


Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam Jun 2019

Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam

Mechanical Engineering Faculty Research

Lignin powder was modified via ring-opening polymerization of caprolactone to form a lignin–polycaprolactone (LPCL) particulate. The LPCL particulates were mixed with an acrylonitrile–butadiene–styrene (ABS) matrix at an extremely high rotational speed of up to 3000 rpm, which was achieved by a closed-loop screw mixer and in-line melt extruder. Using this high-shear extruding mixer, the LPCL particulate size was controlled in the range of 3395 nm (conventional twin-screw extrusion) down to 638 nm (high-shear mixer of 3000 rpm) by altering the mixing speed and time. The resulting LPCL/ABS composites clearly showed non-Einstein viscosity phenomena, exhibiting reduced viscosity (2130 Pa·s) compared to …


Biomethane Production From Distillery Wastewater, Zachary Christman Jun 2019

Biomethane Production From Distillery Wastewater, Zachary Christman

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Distillery wastewater treatment is a great ecological problem, for example, India produces 2.7 billion liters of alcohol that results in 40 billion liters of wastewater. However, this material can be seen as a resource since 11 million cubic meters of biogas at 60% methane could be produced in addition to cleaning the water. The distillery has two options of what to do with the biogas. The first is to use the biogas to fuel the distillery making the production plant more energy efficient and removing some of the need to buy natural gas. The other is to upgrade the biogas …


Optimization Of Induction Quenching Processes For Hss Roll Based On Mmpt Model, Ligang Liu, Hui Yu, Zhiqiang Yang, Chunmei Zhao, Tongguang Zhai Jun 2019

Optimization Of Induction Quenching Processes For Hss Roll Based On Mmpt Model, Ligang Liu, Hui Yu, Zhiqiang Yang, Chunmei Zhao, Tongguang Zhai

Chemical and Materials Engineering Faculty Publications

To improve the comprehensive performance of high speed steel (HSS) cold rolls, the induction hardening processes were analyzed by numerical simulation and experimental research. Firstly, a modified martensitic phase transformation (MMPT) model of the tested steel under stress constraints was established. Then, the MMPT model was fed into DEFORM to simulate the induction quenching processes of working rolls based on an orthogonal test design and the optimal dual frequency of the induction quenching process was obtained. The results indicate that the depth of the roll’s hardened layer increases by 32.5% and the axial residual tensile stress also becomes acceptable under …


Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang Jun 2019

Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

In this study, we analyze the transient diffuse-induced-deformation of an electrode consisting of the conducting polymer polypyrrole (PPY) by using the theories of linear viscoelasticity and diffusion-induced stress. We consider two constitutive relationships with dependence of viscosity on strain rate: Kelvin-Voigt model and three-parameter solid model. A numerical method is used to solve the problem of one-dimensional, transient diffusion-induced-deformation under potentiostatic operation. The numerical results reveal that the maximum displacement occurs at the free surface and the maximum stress occurs at the fixed end. The inertia term causes the stress to increase at the onset of lithiation. The stress decreases …


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the …


Design Of A Portable Biogas Purification And Storage System, Anikumar Kosna, Bade Shrestha Mar 2019

Design Of A Portable Biogas Purification And Storage System, Anikumar Kosna, Bade Shrestha

Faculty Research and Creative Activities Award (FRACAA)

The objective of this study is to propose and design a commercial portable purification and storage system to commercialize biogas (which mainly consists of 45 - 75 % of methane and 15 - 16% of carbon dioxide), produced from household/non-commercial biogas plants. The selection of purification process is based on the portability of the purification system.


Urea Functionalization Of Ultrasound-Treated Biochar: A Feasible Strategy For Enhancing Heavy Metal Adsorption Capacity, Baharak Sajjadi, James William Broome, Wei Yin Chen, Daniell L. Mattern, Nosa O. Egiebor, Nathan Hammer, Cameron L. Smith Mar 2019

Urea Functionalization Of Ultrasound-Treated Biochar: A Feasible Strategy For Enhancing Heavy Metal Adsorption Capacity, Baharak Sajjadi, James William Broome, Wei Yin Chen, Daniell L. Mattern, Nosa O. Egiebor, Nathan Hammer, Cameron L. Smith

Faculty and Student Publications

© 2018 Elsevier B.V. The main objective of a series of our researches is to develop a novel acoustic-based method for activation of biochar. This study investigates the capability of biochar in adsorbing Ni(II) as a hazardous contaminant and aims at enhancing its adsorption capacity by the addition of extra nitrogen and most probably phosphorous and oxygen containing sites using an ultrasono-chemical modification mechanism. To reach this objective, biochar physically modified by low-frequency ultrasound waves (USB) was chemically treated by phosphoric acid (H3PO4) and then functionalized by urea (CO(NH2)2). Cavitation induced by ultrasound waves exfoliates and breaks apart the regular …


Fluorescence Of Cdse/Zns Quantum Dots In Toluene: Effect Of Cyclic Temperature, Ting Chen, Weiling Luan, Shaofu Zhang, Fuqian Yang Feb 2019

Fluorescence Of Cdse/Zns Quantum Dots In Toluene: Effect Of Cyclic Temperature, Ting Chen, Weiling Luan, Shaofu Zhang, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

Quantum dots (QDs) are the potential material for the application in optical thermometry, and have been successfully applied to solar cells, LEDs, bio-labeling, structural health monitoring, etc. In this paper, we study the fluorescence properties of CdSe/ZnS QDs in toluene under the action of heating-cooling cycles. The experimental results show that, in a heating-cooling cycle, increasing temperature causes red-shift of the emission peak and the decrease of the PL intensity, and decreasing temperature causes blue-shift of the emission peak and the increase of the PL intensity. The surface structures of the QDs likely are dependent on the cycle numbers, which …