Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

Adaptive Vehicle Control, Brian L. Finger, Maria Vargas, Jacob T. Larson, Christopher J. Villa Jun 2021

Adaptive Vehicle Control, Brian L. Finger, Maria Vargas, Jacob T. Larson, Christopher J. Villa

Mechanical Engineering

This report presents the final design for our device made for Mrs. Laura Jagels. Mrs. Jagels, who has an above the knee amputation, needed a device that would allow her to operate a manual car in a safe and reliable way that still gives her the traditional driving experience. This report takes into consideration the shortcomings of current market devices that enable amputees to operate vehicles. From this research and through interviews with Mrs. Jagels, we were able to decide on our device specifications, giving us a basis to objectively evaluate designs. Ideation and concept prototype building was performed for …


Door Barricade, Alex Cerino Jan 2021

Door Barricade, Alex Cerino

Williams Honors College, Honors Research Projects

My senior capstone project will be a door barricade. The main idea for the use of the door barricade is for schools in the case of an intruder. The barricade that I will be designing is a solution to the inefficient barricades that I saw at my high school. It could also be used at businesses and homes. My design would be easy to use and have a fail-safe option. The two areas of mechanical engineering technology that my capstone project will focus on are stress analysis and electronics. Every part for my door barricade is drawn in SolidWorks. All …


2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez Nov 2020

2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez

Mechanical Engineering

Professor Xing, an assistant professor at Cal Poly, proposed the 2 DOF Robotic Leg project for this quarter’s senior project class. The project is to build a robotic leg attached at the hip to a stand, which will be used as a teaching tool and eventually help develop Cal Poly’s very own robotic quadruped. Since this project has multiple uses after its completion, there are multiple customers that it must perform well for: the Cal Poly Mechanical Engineering (ME) Department, the ME Lab instructors, and the students. The Scope of Work (Sections 2 & 3) is composed of 2 main …


Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler Mar 2020

Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler

Honors Theses

The purpose of this study was to improve a prosthetic knee model in terms of size, weight, and biocompatibility. Several tests were run to determine its effectiveness in supporting static and quasistatic loads. The positions in which these tests were run include static upright standing, static one-knee 90 degree kneeling, static squatting at maximum flexion, and quasistatic midstride. These simulations were conducted to find areas of high stress and strain. These patterns were used to determine the maximum body weight a physical prosthetic could support. The material used to create the prosthetic was changed from AISI 316 stainless steel to …


Autojack - Hydraulic Powertrain System, Tyce Vu Jan 2019

Autojack - Hydraulic Powertrain System, Tyce Vu

All Undergraduate Projects

A primary problem for mechanics and automotive enthusiasts is the risk associated with lifting and securing a vehicle with conventional jack stands. Often times, improper jack-stand installation results in the vehicle collapsing unexpectedly, causing injury and/or death. This problem can be minimized through the application of a newly re-designed vehicle lifting system. The conventional method for lifting cars is time consuming and can be unsafe in many circumstances. A better, safer, and more efficient lift design was needed; the AutoJack. The approach of the AutoJack design was entirely focused on the safety of lifting a vehicle. Safety was improved by …


Custom Designed Wall Mounted Shop Crane, Bradley Lewis Jan 2019

Custom Designed Wall Mounted Shop Crane, Bradley Lewis

All Undergraduate Projects

The objective of this project was to design and fabricate a custom wall mounted jib crane to specific, non-standard dimensions. The crane was designed to be industry rated for 2000 pounds, rotate at least 180 degrees, and be designed to have a maximum boom length tailored to the specific installation site. Two potential installation sites and purposes were selected for construction: inside the bay doors of a fabrication shop, intended to transfer large pieces of material to and from a plasma table, and inside a car maintenance garage, intended to lift and remove engines and transmissions from cars.

Design of …


Fatigue Tester, Nicholas Fazio Jan 2019

Fatigue Tester, Nicholas Fazio

Williams Honors College, Honors Research Projects

The purpose of this project is to combine all my experience, knowledge and skills that I’ve acquired over the years as a Mechanical Engineering Technology student to completely design and build a fatigue tester. This will give me valuable experience in the process of designing and assembling a product and give me a great example to add to my portfolio. The tester will be completed through a process of researching design and modeling. Once everything is properly calculated and designed the parts that can be fabricated will. The rest will be ordered and then everything will be assembled. Upon completion, …


Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell Jan 2019

Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell

Williams Honors College, Honors Research Projects

This design project will aim to provide archery hunters with a platform to simulate shooting at string jumping deer. String jumping refers to a spooked deer hearing the snap of a bow string and instintivly ducking up to ten inches. This often results in wounded or missed deer. We will design and build a control system that uses the sound of a bow string as a trigger to operate a mechanical target system. A sound sensor will mimic a deer’s hearing in close range hunting and then send a signal to the mechanical system to replicate the dropping motion of …


Design For Maintainability In Developing Communities—A Case Study On The Uros Islands, Thomas Barlow Jul 2018

Design For Maintainability In Developing Communities—A Case Study On The Uros Islands, Thomas Barlow

Undergraduate Honors Theses

Designing products for developing communities has exposed many of the underlying assumptions that engineers from developed nations have during the design process. There has been much written about these underlying assumptions in order to create a better framework for designing for developing communities. One unexplored, yet important area is the universality of common maintainability principles used in developed countries when designing products used in developing communities. Such principles include: simplicity, diagnosability, standardization of parts, modular subassemblies, minimizing assembly and disassembly parts, labeling components, increased life of moving parts, manuals, and simplifying tools needed for repairs [1]–[3]. The purpose of this …


Design Of A Robotic Cownose Ray, Mark Marzotto Jun 2018

Design Of A Robotic Cownose Ray, Mark Marzotto

Honors Theses

Nature often inspires advances in science and technology and a promising example of this is mimicking locomotion of underwater animals. The main ways in which manmade aquatic vehicles propel themselves are water jets and propellers, which are inconsistent with how underwater animals swim. The cownose ray displays very efficient thrust with low frequency strokes by using a combination of oscillations and undulations with its pectoral fins. The goal of this paper is to mechanically replicate the actual fin motion of the cownose ray in order to capture these attractive features. The design will account for both the oscillations by designing …


Mechanical Design And Optimization Of An Interactive Animatronic Bald Eagle, Eric Burns Sep 2016

Mechanical Design And Optimization Of An Interactive Animatronic Bald Eagle, Eric Burns

Phi Kappa Phi Research Symposium (2012-2016)

Animatronics is a specialized sub-category of mechatronics, a fusion of mechanical and electrical engineering. The field has grown from small, individual projects into a major industry. As animatronics progress, mechanical engineers are pushed to design internal structures which occupy ever-decreasing spaces and to ensure designs can undergo maintenance and modifications smoothly. This research investigates methods of reducing space required for mechanisms and several other beneficial methods of development as well as varying satisfactions for audiences when exposed to actor-controlled systems rather than pre-scripted functions. The mechanical systems are designed using CAD software available at Georgia Southern. On-campus, resources are used …


Orchard Bin Atv Trailer, Neil F. Leitz Jan 2016

Orchard Bin Atv Trailer, Neil F. Leitz

All Undergraduate Projects

A local orchardist was experiencing a problem that was being caused by their lack of apple picking bin moving equipment. The orchardist needed a well-engineered solution to this lack of equipment. The solution arrived at was a five bin trailer. There were multiple design requirements for this trailer, including the device needing to be able to interface with an ATV, be able to be loaded by hand, be able to carry five bins, and not exceed a budget of $750. While perfecting the design of the trailer, a number of different disciplines were utilized, which included dynamics, kinematics, static loading …


Underwater Rope Fatigue Testing Machine, Napoleon Nino, Andrew Pimentel Dec 2015

Underwater Rope Fatigue Testing Machine, Napoleon Nino, Andrew Pimentel

Mechanical Engineering

The design and fabrication of an underwater rope fatigue testing machine meant to simulate the effects of an oceanic environment and the effects on rope.


2015 Zips Sae Baja Brakes And Throttle System, Philip A. Bennett Jan 2015

2015 Zips Sae Baja Brakes And Throttle System, Philip A. Bennett

Williams Honors College, Honors Research Projects

The SAE Baja student design team at The University of Akron is one of the longest-standing design teams at the university. The purpose of this team is to design, manufacture, test, and race an off-road vehicle within the guidelines of competition established by the Society of Automotive Engineers. The vehicle is made up of a small number of subsystems including frame, drivetrain, suspension, steering, and braking. The following will discuss all aspects of the design process of the braking and throttle system of the 2015 Zips Baja car. This process includes several steps and considerations such as design goals, system …


Modification Of A Draw Bar Type Arena Harrow To Three Point Mounted Type Harrow, Clayton Alan Brown Jun 2014

Modification Of A Draw Bar Type Arena Harrow To Three Point Mounted Type Harrow, Clayton Alan Brown

BioResource and Agricultural Engineering

This senior project will be the design, and construction of a three point hitch to be attached to a draw bar type spike tooth harrow. Currently used by the Cal Poly Rodeo Team to cultivate their arena before performances, and practices.

The attachment will allow the harrow to be pulled in both directions to create different types of soil affects.

Also the fabrications has a minimal budget so the majority of the materials will be scrap material already in position of the rodeo team or donated to the project.


Formula Sae Hybrid Carbon Fiber Monocoque / Steel Tube Frame Chassis, Matthew Hagan, John Rappolt, John Waldrop Jun 2014

Formula Sae Hybrid Carbon Fiber Monocoque / Steel Tube Frame Chassis, Matthew Hagan, John Rappolt, John Waldrop

Mechanical Engineering

The Cal Poly Formula SAE Team created this project in order to design and fabricate a high-performance chassis which would be competitive at 2013 FSAE Lincoln, and to document the process so that future teams could more easily create a chassis. One of the main goals was to reduce weight from the 143- lb 2012 chassis subsystem. A weight of 95 lb was achieved, with 82 lb in the chassis structure itself and a predicted torsional stiffness of 1700 lb*ft/deg. Composite materials design and manufacturing techniques were developed during the project. Design, testing, and manufacturing processes are detailed, and results …