Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

A Short-Distance Integral-Balance Solution To A Strong Subdiffusion Equation: A Weak Power-Law Profile, Jordan Hristov Oct 2010

A Short-Distance Integral-Balance Solution To A Strong Subdiffusion Equation: A Weak Power-Law Profile, Jordan Hristov

Jordan Hristov

The work presents an integral solution of the time-fractional subdiffusion through a preliminary defined profile with unknown coefficients and the concept of penetration layer well known from the heat diffusion The profile satisfies the boundary conditions imposed at the boundary of the boundary layer in a weak form that allows its coefficients to be expressed through the boundary layer depth as unique parameter describing the profile. The technique is demonstrated by a solution of a time fractional subdiffusion equation in rectilinear 1-D conditions.


Energetyka Niskoemisyjna, Wojciech M. Budzianowski Sep 2010

Energetyka Niskoemisyjna, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Analytic Construction Of Periodic Orbits In The Restricted Three-Body Problem, Mohammed A. Ghazy Jul 2010

Analytic Construction Of Periodic Orbits In The Restricted Three-Body Problem, Mohammed A. Ghazy

Mechanical & Aerospace Engineering Theses & Dissertations

This dissertation explores the analytical solution properties surrounding a nominal periodic orbit in two different planes, the plane of motion of the two primaries and a plane perpendicular to the line joining the two primaries, in the circular restricted three-body problem. Assuming motion can be maintained in the plane and motion of the third body is circular, Jacobi's integral equation can be analytically integrated, yielding a closed-form expression for the period and path expressed with elliptic integral and elliptic function theory. In this case, the third body traverses a circular path with nonuniform speed. In a strict sense, the in-plane …


Heat-Balance Integral To Fractional (Half-Time) Heat Diffusion Sub-Model, Jordan Hristov Jun 2010

Heat-Balance Integral To Fractional (Half-Time) Heat Diffusion Sub-Model, Jordan Hristov

Jordan Hristov

The fractional (half-time) sub-model of the heat diffusion equation, known as Dirac-like evolution diffusion equation has been solved by the heat-balance integral method and a parabolic pro file with unspecified exponent. The fractional heat-balance integral method has been tested with two classic examples: fixed temperature and fixed flux at the boundary. The heat-balance technique allows easily the convolution integral of the fractional half-time derivative to be solved as a convolution of the time-independent approximating function. The fractional sub-model provides an artificial boundary condition at the boundary that closes the set of the equations required to express all parameters of the …


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mikhail Khenner

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Conference Proceedings 3rd International Scientific Conference On “Energy Systems With It” At Alvsjö Fair In Association With Energitinget March 16-17 2010, Dr. Erik Dahlquist, Dr. Jenny Palm Mar 2010

Conference Proceedings 3rd International Scientific Conference On “Energy Systems With It” At Alvsjö Fair In Association With Energitinget March 16-17 2010, Dr. Erik Dahlquist, Dr. Jenny Palm

Dr. Erik Dahlquist

2010 “The Energiting” is performed for the 12th time. The International Scientific conference is arranged for the 3rd time. The organisers are Swedish Energy Agency, Mälardalen University and the Research School for Energy Systems with LiU, KTH, UU and CTH. The first topic will be “Energy systems” covering use of renewable energy sources, energy conversion and process efficiency improvement with new technologies, as well as societal aspects of the introduction of new technologies. The second topic is “Energy and IT”. This covers energy and load management, interaction between production, distribution and “consumption”, usage of data for decision support and control, …


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Grafika Inżynierska Ćw., Wojciech M. Budzianowski Jan 2010

Grafika Inżynierska Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Metody Numeryczne Lab., Wojciech M. Budzianowski Jan 2010

Metody Numeryczne Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Odnawialne Źródła Energii W., Wojciech M. Budzianowski Jan 2010

Odnawialne Źródła Energii W., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mikhail Khenner

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=OBi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Applications Of Pattern Classification To Time-Domain Signals, Crystal Ann Bertoncini Jan 2010

Applications Of Pattern Classification To Time-Domain Signals, Crystal Ann Bertoncini

Dissertations, Theses, and Masters Projects

Many different kinds of physics are used in sensors that produce time-domain signals, such as ultrasonics, acoustics, seismology, and electromagnetics. The waveforms generated by these sensors are used to measure events or detect flaws in applications ranging from industrial to medical and defense-related domains. Interpreting the signals is challenging because of the complicated physics of the interaction of the fields with the materials and structures under study. often the method of interpreting the signal varies by the application, but automatic detection of events in signals is always useful in order to attain results quickly with less human error. One method …