Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Mechanical Engineering

Dynamical Modeling Of Resistojet Style Thrusters For Fault Detection, And Fault Identification, Jonathan Leo Kerivan Jan 2024

Dynamical Modeling Of Resistojet Style Thrusters For Fault Detection, And Fault Identification, Jonathan Leo Kerivan

Graduate College Dissertations and Theses

The work presented in this thesis investigates and validates the dynamic modeling, fault detection, and fault identification (FDI) for the resistojet thruster system, typically used in low magnitude thrust applications for smaller spacecraft. The resistojet thruster is an improvement upon the widely utilized cold gas thruster, featuring an incorporated heating section aimed at improving propellant efficiency. This additional heating section enhances the performance of the system by increasing the propellant’s thermal energy before its discharge through the nozzle, subsequently leading to a reduction in overall fuel consumption. To implement a model-based FDI technique tailored to the typical resistojet thruster system, …


Surface Temperature Measurement Fidelity In High Enthalpy Plasma Test Facilities, Owen Plante Jan 2023

Surface Temperature Measurement Fidelity In High Enthalpy Plasma Test Facilities, Owen Plante

Graduate College Dissertations and Theses

The classification and study of thermal protection systems (TPS) relies heavily on the accurate measurement of surface temperature. The best way to measure surface temperature in ground test facilities is through optical pyrometery due to the non intrusive nature of this method. Optical pyrometric devices use the emission of a greybody curve to calculate temperatures. These devices are left susceptible to parasitic radiation coming from the plasma generated in ground test facilities. The parasitic radiation comes from the emission lines of the test plasma in the investigation region of the devices. The parasitic radiation from the plasma and short comings …


Carbon Monoxide Measurements In A Co2 Plasma Using Two-Photon Laser Induced Fluorescence, Brandon Voll Jan 2021

Carbon Monoxide Measurements In A Co2 Plasma Using Two-Photon Laser Induced Fluorescence, Brandon Voll

Graduate College Dissertations and Theses

Uncertainties in surface catalytic reaction rates in a CO2 plasma have led to overdesign of thermal protection systems, which has caused planetary entry vehicles for the Martian atmosphere to be heavier than necessary. This, in turn, has decreased the available payload of various missions. A better understanding of these reaction rates will allow more precise development of thermal protection systems leading to safer and more effective atmospheric entry vehicles. Near wall measurements in a plasma facility using laser spectroscopic techniques with sub-millimeter spatial resolution provide a method to determine surface-catalyzed reaction efficiencies over metallic surfaces. The present work includes laser …


Characterization Of Pressure And Temperature Reactions In An On-Demand Pressurization System For Small Satellite Propulsion, Anna M. Humphreys Jan 2021

Characterization Of Pressure And Temperature Reactions In An On-Demand Pressurization System For Small Satellite Propulsion, Anna M. Humphreys

Graduate College Dissertations and Theses

With the popularity of small satellites on the rise in the aerospace industry, the need for propulsion systems developed specifically for small satellite applications is ever-present. An emerging subsection of the small satellite field is CubeSats, which are cubic satellites measuring 10cm per side and weighing less than 1.33kg. At launch, CubeSats are fixed to a larger rocket but are deployed once in orbit and must rely on their own propulsion system for orbit control and maneuverability. While propulsion systems exist for rockets and satellites that are orders of magnitude larger, these traditional systems are often too bulky and complex …


Characterization Of The University Of Vermont Plasma Torch And Simulation Of Pyrolysis Gas And Plasma Interactions, Precious Jagun Jan 2020

Characterization Of The University Of Vermont Plasma Torch And Simulation Of Pyrolysis Gas And Plasma Interactions, Precious Jagun

Graduate College Dissertations and Theses

In previous studies done at the University of Vermont’s Inductively coupled Plasma (ICP) touch facility, the plasma conditions were always assumed to be in Local Thermodynamic Equilibrium(LTE) state. To improve the knowledge of the thermodynamic properties of the plasma conditions, in this study, experiments and analysis were conducted to determine whether or not the facility is indeed in LTE. LIF data was collected at 7mm off the exit of the quartz tube and compared with CEA simulations for the same plasma conditions. The facility was also better characterized by using LTE analyses of the absolute emission intensities to determine the …


Optimization Of Mixing Efficiency In Low Reynolds Unlike Doublet Injectors By Incorporating Swirl, Samuel Braggins Ligon Jan 2020

Optimization Of Mixing Efficiency In Low Reynolds Unlike Doublet Injectors By Incorporating Swirl, Samuel Braggins Ligon

Graduate College Dissertations and Theses

One of the largest issues concerning industrial cube satellite manufacturing is the development of propulsion systems at extremely small scales. Bipropellant cube satellite propulsion systems face challenges associated with the mixing of two fluids which operate in low Reynolds number environments. Low Reynolds, or laminar, fluid flow is unique to cube satellite injection systems because of their unprecedented small scale. This work is intended to both test the validity of a proposed cube satellite injection system, and to test the accuracy of numerical method approaches to solving the problem of laminar flow mixing in such devices. The proposed injector is …


Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez Jan 2020

Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez

Graduate College Dissertations and Theses

Flexible thermal protection materials made from two-dimensional woven ceramics fibers are of significant interest for hypersonic inflatable aerodynamic decelerators being developed by NASA for future missions on Mars and other planets. A key component of the thermal shield is a heat-resistant outer ceramic fabric that must withstand harsh aero-thermal atmospheric entry conditions. However, a predictive understanding of heat conduction processes in complex woven-fiber ceramic materials under deformation is currently lacking. This dissertation presents a combined experimental and computational study of thermal conductivity in alumina-based Nextel-440 and silicon carbide Hi-Nicalon 5-harness-satin woven fabrics, using the hot-disk transient plane source method and …


Quadrature-Based Gravity Models For The Homogeneous Polyhedron, Jason Pearl Jan 2019

Quadrature-Based Gravity Models For The Homogeneous Polyhedron, Jason Pearl

Graduate College Dissertations and Theses

A number of missions to comets and asteroids have been undertaken by major space organizations driving a need to accurately characterize their gravitational fields. This is complicated however by their irregular shapes. To accurately and safely navigate spacecraft in these environments, a simple point-mass gravity model is insufficient and instead higher-fidelity models are required. Several such models exist for this purpose but all posess drawbacks. Moreover, there are some applications for which the currently available models are not particular well suited.

In this dissertation, numerical quadrature and curvilinear meshing techniques are applied to the small body gravity problem. The goal …


Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan Jan 2018

Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan

Graduate College Dissertations and Theses

A volume-filtered Large-Eddy Simulation (LES) of oscillatory flow over a rippled mobile bed is conducted using an Euler-Lagrange approach. As in unsteady marine flows over sedimentary beds, the experimental data, referenced in this work for validation, shows quasi-steady state ripples in the sand bed under oscillatory flow. This work approximately reproduces this configuration with a sinusoidal pressure gradient driven flow and a sinusoidally rippled bed of particles. The LES equations, which are volume-filtered to account for the effect of the particles, are solved on an Eulerian grid, and the particles are tracked in a Lagrangian framework. In the Discrete Particle …


Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin Jan 2017

Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin

Graduate College Dissertations and Theses

An important step in the more efficient use of PICA (Phenolic Impregnated Carbon Ablator) as a Thermal Protection System (TPS) material for spacecraft is the understanding of its pyrolysis mechanics. The gases released during pyrolysis and their subsequent interaction with the reactive plasma environment is not yet well understood. The surface recession of PICA as it ablates during testing only makes the study and characterization of the chemical reactions more difficult. To this end, a probe has been designed for this study to simulate, in steady state, the pyrolysis gases within the UVM 30kW Inductively Coupled Plasma (ICP) Torch Facility. …


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson Jan 2017

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as …


Assessment Of Surface-Catalyzedreaction Products From Hightemperature Materials In Plasmas, Luke Daniel Allen Jan 2016

Assessment Of Surface-Catalyzedreaction Products From Hightemperature Materials In Plasmas, Luke Daniel Allen

Graduate College Dissertations and Theses

Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production …


Development Of An Additively Manufactured Microthruster For Nanosatellite Applications, Kevin Russell Gagne Jan 2016

Development Of An Additively Manufactured Microthruster For Nanosatellite Applications, Kevin Russell Gagne

Graduate College Dissertations and Theses

Next generation small satellites, also known as nanosatellites, have masses significantly lower than traditional satellites. Including the propellant mass, the total mass of a nanosatellite is often in the range of 1 to 4 $kg$. These satellites are being developed for numerous applications related to research, defense, and industry. Since their popularity began in the early 2000's, limitations on the downscaling of propulsion systems has proven to be problematic. Due to this, the vast majority of nanosatellite missions have limited lifespans of 90-120 days in low Earth orbit before they reenter the Earth's atmosphere. Although satellites on this scale have …


Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl Jan 2016

Two-Dimensional Numerical Study Of Micronozzle Geometry, Jason M. Pearl

Graduate College Dissertations and Theses

Supersonic micronozzles operate in the unique viscosupersonic flow regime, characterized by large Mach numbers (M>1) and low Reynolds numbers (Re<1000). Past research has primarily focused on the design and analysis of converging-diverging de Laval nozzles; however, plug (i.e. centerbody) designs also have some promising characteristics that might make them amenable to microscale operation. In this study, the effects of plug geometry on plug micronozzle performance are examined for the Reynolds number range Re = 80-640 using 2D Navier-Stokes-based simulations. Nozzle plugs are shortened to reduce viscous losses via three techniques: one - truncation, two - the use of parabolic contours, and three - a geometric process involving scaling. Shortened nozzle are derived from a full length geometry designed for optimal isentropic performance. Expansion ratio (ε = 3.19 and 6.22) and shortened plug length (%L = 10-100%) are varied for the full Reynolds number range. The performance of plug nozzles is then compared to that of linear-walled nozzles for equal pressure ratios, Reynolds numbers, and expansion ratios. Linear-walled nozzle half-angle is optimized to to ensure plug nozzles are compared against the best-case linear-walled design.

Results indicate that the full length plug nozzle delivers poor performance on the microscale, incurring excessive viscous losses. Plug performance is increased by shortening the nozzle plug, with the scaling technique providing the best performance. The benefit derived from reducing plug length depends upon the Reynolds number, with a 1-2% increase for high Reynolds numbers an up to 14% increase at the lowest Reynolds number examined. In comparison to Linear-walled nozzle, plug nozzles deliver superior performance when under-expanded, however, …


Multi-Satellite Formation Trajectory Design With Topological Constraints Over A Region Of Interest Using Differential Evolution, David William Hinckley Jan 2015

Multi-Satellite Formation Trajectory Design With Topological Constraints Over A Region Of Interest Using Differential Evolution, David William Hinckley

Graduate College Dissertations and Theses

Satellite formation missions allow for scientific measurement opportunities that are only otherwise possible with the use of unrealistically large satellites. This work applies the Evolutionary Algorithm (EA), Differential Evolution (DE), to a 4-satellite mission design that borrows heavily from the mission specifications for Phase 1 of NASA's Magnetospheric Multi-Scale Mission (MMS). This mission specifies goals for formation "quality" and size over the arc when scientific measurements are to be taken known as the Region of Interest (ROI). To apply DE to this problem a novel definition of fitness is developed and tailored to trajectory problems of the parameter scales of …


Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty Jan 2015

Numerical Simulations Of Reacting Flow In An Inductively Coupled Plasma Torch, Maximilian Dougherty

Graduate College Dissertations and Theses

In the design of a thermal protection system for atmospheric entry, aerothermal heating presents a major impediment to efficient heat shield design. Recombination of atomic species in the boundary layer results in highly exothermic surface-catalyzed recombination reactions and an increase in the heat flux experienced at the surface. The degree to which these reactions increase the surface heat flux is partly a function of the heat shield material. Characterization of the catalytic behavior of these materials takes place in experimental facilities, however there is a dearth of detailed computational models for the fluid dynamic and chemical behavior of such facilities. …


Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens Jan 2015

Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens

Graduate College Dissertations and Theses

Flexible thermal protection systems are of interest due to their necessity for the success of future atmospheric entry vehicles. Current non-ablative flexible designs incorporate a two-dimensional woven fabric on the leading surface of the vehicle. The focus of this research investigation was to characterize the aerothermal performance of silicon carbide fabric using the 30 kW Inductively Coupled Plasma Torch located at the University of Vermont. Experimental results have shown that SiC fabric test coupons achieving surface temperatures between 1000°C and 1500°C formed an amorphous silicon dioxide layer within seconds after insertion into air plasmas. The transient morphological changes that occurred …


Nonlinear Ball Chain Waveguides For Acoustic Emission And Ultrasound Sensing Of Ablation, Stephen Herbert Pearson Jan 2014

Nonlinear Ball Chain Waveguides For Acoustic Emission And Ultrasound Sensing Of Ablation, Stephen Herbert Pearson

Graduate College Dissertations and Theses

Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion - often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments …